
UNIVERSITÉ DE TOURS
ÉCOLE DOCTORALE MIPTIS

Equipes BDTLN et ROOT
LIFAT (EA 6300)

THÈSE présentée par :

Alexandre Chanson
soutenue le : 1er décembre 2023

pour obtenir le grade de : Docteur de l’université de Tours

Discipline/ Spécialité : Informatique

Optimisation et analyse
interactive de données : le

Problème du Voyageur de Données

THÈSE dirigée par :
Dr. Labroche Nicolas Université de Tours
Pr. Marcel Patrick Université d’Orléans
Pr. T’Kindt Vincent Université de Tours

RAPPORTEURS :
Pr. Bellatreche Ladjel ISAE-ENSMA
Pr. Péton Olivier IMT Atlantique

JURY :
Pr. Bellatreche Ladjel ISAE-ENSMA
Pr. Jourdan Laetitia, Présidente Université de Lille
Dr. Labroche Nicolas Université de Tours
Dr. Maabout Sofian Université de Bordeaux
Pr. Marcel Patrick Université d’Orléans
Pr. Péton Olivier IMT Atlantique
Pr. T’Kindt Vincent Université de Tours

i

Acknowledgments

This thesis is part of a collaboration between the operation research (ROOT) and
database (BDTLN) teams of the University of Tours computer science lab (LIFAT).
I’d like to thank both teams and their members for their warm welcome. I’d like
to thank the directors of both ROOT and BDTLN, Yannick and Béatrice, for their
support.

To my comrades Ben, Adam, and Nicolas, who have been working alongside me
on their own dissertations. Thanks for the support, the fun moments, and the jokes
in the break room. Having good friends who go through the same hardship as you
really helps.

To my advisors, Nicolas, Vincent, and Patrick, thanks for the many opportunities
to learn and perfect the numerous skills necessary to be a young researcher. I value
the time you took to help me along this journey and correct my mistakes along the
way. I still have many things to learn, and hope we will have opportunities to work
together in future endeavors.

To my family, your support has been essential going through this work. Three
years is a long time to work on a project with ups and downs, and your support has
been very much appreciated.

ii

Résumé

Cette thèse contribue à l’automatisation de l’analyse exploratoire des données
(AED). L’AED est un processus itératif qui consiste à analyser des données en
effectuant des actions, telle qu’une requête sur des données, à recevoir le résultat et
à décider de l’étape suivante. L’objectif final de l’AED est l’extraction de trouvailles,
des fragments d’informations utiles étayées par les données. L’AED a été jusque-là
un processus principalement manuel, mais depuis quelques années la communauté
de recherche en bases de données a entrepris de l’automatiser. L’automatisation de
l’AED nécessite de surmonter plusieurs obstacles, dont notamment l’identification
et la représentation des informations les plus intéressantes présentent dans une base
de données. Dans cette thèse, nous abordons le problème de l’automatisation de
l’AED par la construction d’une séquence de requêtes représentant des trouvailles
pertinentes. Pour se faire nous introduisons et étudions le problème d’optimisation
associé, nommé le problème du voyageur de données (ou Traveling Analyst Prob-
lem, TAP). Nous établissons la relation entre le TAP et une famille de problèmes
de transport classiques appelés problèmes d’orientation. Nous étudions la struc-
tures des instances du TAP et identifions des critères de domination entre requêtes
que nous proposons d’exploiter. Nous proposons différentes stratégies de résolution
selon les tailles des bases de données, dont notamment des matheuristiques. Celles-
ci tirent profit des solveurs mathématiques pour construire des solutions de haute
qualité au TAP, notamment pour les bases de données de petite taille. En étudiant
la littérature, nous avons identifié l’action de comparaison de données comme la
principale activité des analystes de donnée. Nous définissons formellement les trou-
vailles de comparaison et les requêtes de comparaison associées. Nous mettons en
œuvre un prototype capable de construire les instances et de résoudre le TAP pour
ces requêtes de comparaisons. A l’aide des heuristiques précédemment développées
nous sommes en mesure d’appliquer notre méthode sur de grandes bases impliquant
des millions de comparaisons. Pour les bases de données de plus grande taille, la
simple construction des instances du TAP est une tâche complexe, nécessitant la
mise en œuvre de plusieurs stratégies d’optimisation notamment pour exécuter des
millions de tests statistiques rapidement. Ce processus représente la majeure partie
du temps de calcul total. Afin d’éviter cela, nous nous inspirons de la méthode de
génération de colonnes. Nous introduisons la génération de requêtes, une technique
capable de résoudre le TAP sans explorer l’ensemble des requêtes de comparaison
associées à une base de données et donc d’éviter la majorité du coût de calcul. Nous
montrons sur de grandes bases de données que cette approche est non seulement
plus rapide mais produit aussi de meilleures solutions que de construire la totalité
de l’instance et de la résoudre à l’aide d’une heuristique traditionnelle.

Contents

List of Acronyms v

1 Introduction 1

2 Exploratory Data Analysis 5
2.1 Introduction . 5
2.2 Discovery-Driven Exploration . 6
2.3 Interestingness of insights . 6
2.4 Comparisons . 9
2.5 Automating Exploratory Data Analysis 9

2.5.1 Generate and select . 10
2.5.2 Guided EDA . 11
2.5.3 EDA as an optimization problem 12

3 The Traveling Analyst Problem 13
3.1 Introduction . 13
3.2 Operation research in a nutshell . 14

3.2.1 Exact solution methods . 15
3.2.2 Heuristics . 18

3.3 The Orienteering problem . 19
3.4 Comparison queries . 21
3.5 Summary of contributions . 23

3.5.1 Enumeration of the complete set of queries 23
3.5.2 Intractability of the enumeration of the whole set of queries . 23

4 Results on enumerable space 25
4.1 Introduction . 25
4.2 A mixed integer formulation . 26
4.3 Preprocessing the set of queries . 27
4.4 Heuristics . 29

4.4.1 Initial heuristics . 29
4.4.2 Matheuristics . 31

4.5 Experiments . 35
4.5.1 Computation of optimal solutions 36
4.5.2 Evaluation of pseudo-dominance and filtering 38
4.5.3 Initial heuristics . 42
4.5.4 Comparison of the matheuristics with optimal solutions . . . 42
4.5.5 Performance on larger instances 45

4.6 Conclusion . 47

iv Contents

5 Applications 49
5.1 Introduction . 49
5.2 Generation of sequences of comparison queries 51
5.3 Comparison queries, hypothesis queries, and insights 51

5.3.1 Comparison queries . 52
5.3.2 Insights and hypothesis queries 52
5.3.3 Insights and statistical errors 55

5.4 Comparison notebooks generation . 55
5.4.1 Interestingness, cost, and distance 56
5.4.2 Generating the set of comparison queries 57

5.5 Optimizing comparison notebook generation 58
5.5.1 Optimizing statistical tests 58
5.5.2 Reducing the number of queries 59

5.6 Experimental results . 61
5.6.1 Experimental setup . 61
5.6.2 Exact resolution of the TAP 62
5.6.3 Scalability . 63
5.6.4 Quality of approximate solutions 66
5.6.5 Human evaluation . 67

5.7 Conclusion . 69

6 Results on non-enumerable space 71
6.1 Motivation . 71
6.2 A query generation Method . 72
6.3 Query evaluation and generation . 74

6.3.1 Estimating interest, time and distance 74
6.3.2 Generation of the starting pool 75
6.3.3 Improving Query Generation 79

6.4 Experiments . 85
6.4.1 Starting pool generation methods 87
6.4.2 Dual Model solver tuning . 91
6.4.3 Improving Query Generation 95
6.4.4 Running times . 96

6.5 Conclusion . 96

7 Conclusion 99

Bibliography 103

List of Acronyms

EDA Exploratory Data Analysis . 5

OLAP OnLine Analytical Processing . 6

LLM Large Language Model . 12

DDE Discovery-Driven Exploration . 6

MIP Mixed Integer Programming . 25

RL Reinforcement Learning . 72

PP Pricing Problem . 72

AI Artificial Intelligence . 6

TSP Travelling Salesperson Problem . 25

RMP Restricted Master Problem . 72

DBMS DataBase Management System . 1

RDBMS Relational DataBase Management System 51

OP Orienteering Problem . 14

TOP Team Orienteering Problem . 19

OPTW Orienteering Problem with Time Windows 19

TOPTW Teams Orienteering Problem with Time Windows 19

VPLS Variable Partitioning Local Search . 19

CI Composite Item . 12

TAP Travelling Analyst Problem . 11

Chapter 1

Introduction

Context and challenges

Exploratory Data Analysis, or EDA, is an iterative process of performing an action
on a data source, such as a query on a DataBase Management System (DBMS),
receiving the result, and deciding on the next step. The final goal of most EDA
sessions relates to the extraction of insights. Insights can be loosely defined as
fragments of useful information backed by the data. For most of its existence since
the seventies, EDA has been mainly a manual process ([Tukey 1977]), and assuming
a small dataset, it can even be performed on paper. However, with the increasing
size and availability of open data, and businesses collecting more data than ever, this
manual approach becomes quickly outdated. Data analysts are only able to focus on
a few databases at a time and are prone to discovering false insights, as shown by a
recent study ([Zgraggen et al. 2018]). For some years, the database community has
been moving towards the ever-closer goal of automating EDA ([Idreos et al. 2015,
Amer-Yahia et al. 2023b]). Automating EDA requires overcoming several hurdles,
notably identifying and correctly presenting the most interesting insights gathered
from a database.

This thesis addresses the problem of automatically constructing an EDA session
as a sequence of queries representing interesting insights. Intuitively, this task can
be split into four steps: (i) generating queries leading to potential insights, (ii)
eliminating false insights, (iii) measuring their interestingness, and (iv) properly
presenting a manageable set of insights to the user.

This problem has previously been tackled in the literature by a few pioneer-
ing works, either using specialized algorithms ([Ding et al. 2019]) or costly machine
learning methods ([Bar El et al. 2019]). The former is only restricted to a specific
type of insights, allowing aggressive optimizations to tackle the massive search space.
The latter uses an agent exhibiting greedy behavior that largely ignores the size of
the search space and lacks the elimination of false insights introduced by the former.
Both elude the presentation phase relying instead on sorting ([Ding et al. 2019]) or
generation order ([Bar El et al. 2019]).

We aim to provide a novel holistic approach to automated EDA. To this extent,
we introduce and study the general optimization problem associated with generating
EDA sessions, called the traveling analyst problem (TAP). While other works use
algorithms derived from the pattern mining and machine learning community. The
originality of our approach relies on the use of the knowledge and approaches of the
operations research community. Including some recently introduced approaches,
such as matheuristics.

2 Chapter 1. Introduction

The work presented in this thesis focuses on automated EDA and tackles the
following questions:

• How to ensure no false insights are shown to the user?

• How to efficiently build the large search space of the TAP?

• How to model and solve the TAP to optimality? Up to which search space
size?

• Can we design fast and efficient heuristics to solve TAP when optimal solutions
are no longer computable?

• Can the TAP be solved without exploring the complete search space?

Contributions

Chapter 2 introduces the task of exploratory data analysis and presents the chal-
lenges and previous works relevant to its automation. Notably, we identify the
comparison task as the main staple of data workers. Although our goal is to define
and study a general automated EDA optimization problem, we choose this compar-
ison task as its main application. Finally, we establish links between the generation
of EDA sessions and similar problems that were tackled by the database community
with the help of operations research.

Chapter 3 introduces operations research and its relevant terminology to the
reader. It formally defines the Travelling Analyst Problem and establishes that the
TAP is a type of orienteering problem. It discusses the relevant operation research
literature. Finally, it introduces and defines the comparison query as the applicative
framework of this thesis.

In Chapter 4, we propose a definition and mathematical program for the TAP
and establish the relation between the TAP and a family of classic transport prob-
lems named orienteering problems. We study and generate different types of in-
stances of the TAP. We identify dominance conditions between queries within a
TAP instance. This enables us to propose cuts and a pre-filtering of TAP instances.
We show that pre-filtering is beneficial to solution time while only slightly degrading
solution quality. We create two heuristics based on knapsack and traveling sales-
person heuristics. We test the performance of these heuristics and compare their
solution quality to optimal solutions on small instances of the TAP. We elaborate
on those heuristic solutions to create two additional matheuristics that deliver near-
optimal solutions in a fraction of the time taken by a conventional mathematical
solver.

Chapter 5, presents the main application of the TAP with comparison queries.
We address several challenges linked to the generation and elimination of false insight
on large databases. Heuristics introduced in Chapter 4 are successfully applied
to these databases creating EDA sessions presented in interactive notebooks. We

3

conduct a qualitative analysis of the notebooks to identify the perceived quality of
the generated EDA sessions by experts.

Finally, in Chapter 7, we propose a novel method called query generation. It
is aimed at solving TAP without enumerating all possible comparison queries for
a database. Indeed, for large databases, even after applying multiple optimization
strategies, several hours are needed to generate the insights. This is due to the
massive number of insights and costly computation involved in some interestingness
measures. To address this issue, query generation takes inspiration from the process
of column generation, a technique used in operations research when dealing with
problem formulations with an untractable number of variables. We show that our
query generation method is capable of solving the TAP without exploring the full
set of comparison queries associated with a database. The query generation method
is often faster and yields better results than previous solution methods for large
databases.

Chapter 2

Exploratory Data Analysis

Contents
2.1 Introduction . 5
2.2 Discovery-Driven Exploration 6
2.3 Interestingness of insights . 6
2.4 Comparisons . 9
2.5 Automating Exploratory Data Analysis 9

2.5.1 Generate and select . 10
2.5.2 Guided EDA . 11
2.5.3 EDA as an optimization problem 12

2.1 Introduction

This thesis focuses on the construction of Exploratory Data Analysis (EDA) ses-
sions. This state-of-the-art first discusses EDA and EDA sessions. We then present
optimization problems and algorithms involved in the automated construction of
EDA sessions and the relevant Operation Research literature.

Exploratory Data Analysis, or the task of interactively analyzing datasets to
gain knowledge, has recently attracted the interest of the database community
([Amer-Yahia et al. 2023b, Idreos et al. 2015]). However, it is not a new concept;
statistician John Tukey qualified EDA as "detective’s work" in his 1977 book
([Tukey 1977]). He advises the reader EDA is about using tools (i.e., statistics)
to gain an understanding of the data. Modern EDA for the average data worker
consists in using tools such as database query tools, specialized software, and flexible
coding interfaces to gather insights ([Idreos et al. 2015, Amer-Yahia et al. 2023b]).
Insights are present in most recent publications on EDA; although precise definitions
may vary, they always represent a piece of useful (to a user) information about the
dataset they are extracted from. This information is always somewhat aggregated,
i.e., it does not concern a single tuple. Insights can be summarized in a single
phrase; examples from the literature are presented in Example 1. Finally, insights
can be spurious, i.e., resulting from random data and a particular aggregation
([Zgraggen et al. 2018]); thus several authors argue that insight should be statisti-
cally significant ([Zgraggen et al. 2018, Ding et al. 2019, Tang et al. 2017]). Recent
work by [Ma et al. 2023b] goes further and links EDA to the recently popular

6 Chapter 2. Exploratory Data Analysis

field of explainable Artificial Intelligence (AI) and proposes causal explanations of
insights.

Example 1 (Insights from the litterature).

• rising trend of brand H’s yearly increased sales [Tang et al. 2017]

• Factor Surgery=Yes is relevant to the difference on Lung Cancer between Lo-
cation=A and Location=B [Ma et al. 2023b]

• For Los Angeles, April has minimum Sales [Ma et al. 2021]

• There are more blocked beds in the Royal London Hospital compared with the
UK average [Wang et al. 2020]

Although nowadays EDA is frequently associated with languages like Python,
we insist on the importance of SQL and databases for data workers, as illustrated
by the 10,000+ data professionals who responded to StackOverflow’s 2020 survey1

showing that SQL is the most used language in data science.

2.2 Discovery-Driven Exploration

EDA is similar to Discovery-Driven Exploration (DDE) of data cubes
[Sarawagi et al. 1998], in whose context the pioneering works by Sunita Sarawagi
([Sarawagi 1999, Sarawagi 2000, Sathe & Sarawagi 2001]) proposed techniques for
interactively browsing interesting cells in a data cube. DDE was essentially mo-
tivated by explaining unexpected data in the result of a cube query. Unex-
pectedness was characterized in terms of deviation from the uniform distribution
([Sarawagi 2000]) or notable discrepancies in the data to be explained by gen-
eralization (rolling-up) ([Sathe & Sarawagi 2001]) or by detailing (drilling-down)
([Sarawagi 1999]). In contrast to DDE, EDA does not assume that the dataset
explored has the multidimensional model of a cube, nor does it assume that the ex-
ploration is limited to classical OnLine Analytical Processing (OLAP) operations.
EDA operations include data retrieval, data representation, and data mining tasks
([Milo & Somech 2018]). Finally, EDA aims to find insights into the data, i.e., high-
level observations that are significant.

2.3 Interestingness of insights

Quantifying the importance of insights attracted a lot of attention in both the
database and visualization communities. [Tang et al. 2017, Zgraggen et al. 2018].
It is commonly admitted that interestingness in EDA is manifold
[Geng & Hamilton 2006, Marcel et al. 2019]. In [El et al. 2020], Bar El et al.

1https://insights.stackoverflow.com/survey/2020

https://insights.stackoverflow.com/survey/2020

2.3. Interestingness of insights 7

distinguish different kinds of interestingness depending on the type of EDA oper-
ation: on the one hand, for group-by operation a conciseness measures considers
compact group-by results that cover many tuples as both informative and easy to
understand; on the other hand, for filtering operation, a measure of exceptionality
compares the filtered tuples to a reference, larger set. The statistical significance of
insights extracted from datasets is often used or mixed with other interestingness
measures [Tang et al. 2017, Zgraggen et al. 2018]. Tang et al. [Tang et al. 2017]
proposed a measure combining statistical significance and the impact of the values
displayed in the insights. Ding et al. with QuickInsight [Ding et al. 2019], uses
the same approach as [Tang et al. 2017] for scoring insights. The impact is simply
the market share of tuples used in the computation of the insight. In Metainsight
[Ma et al. 2021], the insight score is a combination of impact (the importance of
the data scope against the entire database) and conciseness (entropy-like formula
quantification of the generality of the insight). DataShot [Wang et al. 2020] uses
the same interestingness as [Tang et al. 2017]; the authors point to the fact that
both significance and impact are easy to compute across different types of insights.
With Calliope ([Shi et al. 2020]), Shi et al. propose to rely on information theory
and compute the insight self-information and mix it with its statistical significance.
Producing this measure involves computing the probability of each insight given
the dataset; this is likely one of the factors preventing the authors from scaling
their approach.

Overall no consensus seems to emerge from the literature over one par-
ticular interestingness measure for insights. In fact, in their recent tutorial
[Amer-Yahia et al. 2023b] identify five separate dimensions of interestingness mea-
sures with formal definitions almost unique to each paper. Interestingness dimen-
sions are a way to classify interestingness measures according to their goal instead
of their precise mathematical definitions. They are :

1. Relevance (data vs goal): do data satisfy an information need

2. Novelty (data vs history): are data previously unknown

3. Peculiarity (data vs other data): do data differ from their peers

4. Surprise (data vs belief): data does not match user’s prior beliefs

5. Presentation (data vs themselves): is data presentation intelligible

In Table 2.1, we show a selection of twelve recent publications, including our own;
the interestingness measures the authors and the dimensions they pertain to. As
stated by [Amer-Yahia et al. 2023b], there is very little agreement between authors
on the dimensions an interestingness measure should pertain to. Even so, when
there is an agreement, the same dimension can be represented by a different set of
measures. Furthermore, there is no apparent agreement on how to combine different
measures together either. Some authors opt for simple sums, while others choose
products or ratios.

8 Chapter 2. Exploratory Data Analysis

Reference Interestingness Combination Rele
va

nc
e

Nov
elt

y

Pe
cu

lia
rit

y

Su
rp

ris
e

Pr
ese

nt
ati

on

[Bie 2013] Information
content, de-
scriptional
complexity

ratio X X

[Tang et al. 2017] Significance,
coverage

product X

[Ding et al. 2019] Significance,
coverage

product X

[Bar El et al. 2019] Conciseness, dis-
tance, diversity,
coherency

weighted sum X X X

[Personnaz et al. 2021] Familiarity, cu-
riosity

weighted sum X X

[Ma et al. 2021] Conciseness,
coverage

product X X

[Francia et al. 2022] Novelty, pecu-
liarity, surprise

weighted sum X X X

[Shi et al. 2020] Significance
, information
content

product X

[Razmadze et al. 2022] Coverage , diver-
sity

weighted sum X X

[Personnaz et al. 2022] Uniformity, di-
versity, novelty

weighted sum X X

[Chanson et al. 2022a] Significance ,
conciseness,
credibility

product X X

[Chanson et al. 2022b] Learned n/a X

Table 2.1: Intrestingness measures and dimensions in the recent literature

2.4. Comparisons 9

Market share Market shares comes up in several composite interestingness
measures ([Ding et al. 2019, Tang et al. 2017]). Market share like interesting-
ness itself has different definitions depending on the authors. According to
[Amer-Yahia et al. 2023b], Market Share belongs to the coverage dimension. The
simplest is the ratio of tuples that support the insights versus the total number of
tuples in the database, such as in[Razmadze et al. 2022]. It can also be interpreted
in a financial way; for example, if an insight pertains to Sales amounting to a total
of $ 3 million, where the entire company sales for that year amount to $ 30 million,
then the market share of this insight is 0.1 ([Ding et al. 2019]).

2.4 Comparisons

Several studies highlighted the importance of comparisons when analyzing data.
For instance, Blount et al. [Blount et al. 2020] examined 67 stories produced using
EDA, including award-winning data stories, from both professional journalists and
data science-aware students, and found comparisons (showing multiple visualizations
juxtaposed and highlighting the difference between them) to be the most popular
pattern among novices and professionals alike.

Zgraggen et al. [Zgraggen et al. 2018] study the problem of obtaining spurious
comparison insights when exploring a dataset. They define comparison insights as
observations, hypotheses, and generalizations directly extracted from data that do
not require prior knowledge or domain expertise. Insights are categorized into five
insight classes: shape, mean, variance, correlation, and ranking. Each class has
its own hypothesis-testing scheme for insight validation. The authors designed an
experiment where participants explored a synthetic dataset and instructed them to
report their reliable insights by writing them down. 60% of user-reported insights
were spurious, which underlines the need for systems to be able to automatically
characterize comparison insights. Francia et al. [Francia et al. 2021] and, inde-
pendently, Siddiqui et al. [Siddiqui et al. 2021] respectively defined the Assess and
Compare operators to give a clear semantics and logical foundations of comparisons
(and labeling the result of the comparison in [Francia et al. 2021]) of two series of
data. While Compare is expressed in SQL and implemented and optimized within
a RDBMS, Assess is expressed in terms of a cube algebra and implemented as a
middleware. Chapter 5 of this thesis introduces our contribution to the automated
extraction of significant comparison insights from a database.

2.5 Automating Exploratory Data Analysis

In the last few years, many attempts have been made at automating EDA
[Amer-Yahia et al. 2023b, Milo & Somech 2020]. While the obvious time gained by
the users is stated by all authors proposing automated EDA methods as a benefit.
Some studies have shown that users, even experts are prone to errors when gather-
ing insights. Rojas et al. [Rojas et al. 2017] studies the various sampling methods

10 Chapter 2. Exploratory Data Analysis

in the context of big data exploration. They notice that users only use uniform
sampling methods despite their numerous flaws. Likewise, in [Zgraggen et al. 2018],
users are able to find "spurious" insights. Spurious insights originate in random
data; by simply trying many types of aggregation, a user may come up with, for
example, a mean comparison that appears to be significant. Spurious insights may
even be significant with respect to a single statistical test (this is commonly known
as a type I error). This is due to the Multiple Comparison Problem and is widely
known in statistics and scientific fields where many statistical tests are used on the
same data, such as medicine ([Lee & Lee 2018]).

Many proposals have been put forward to support data exploration, which re-
mained until recently a mainly user-driven task ([Idreos et al. 2015]). They in-
cluded visualization tools and interfaces, query recommendation or construction
tools, and a myriad of optimization techniques to ensure the expensive analytical
queries were processed in interactive time. We refer the reader to [Idreos et al. 2015]
tutorial for an overview. Recently the database community has turned its inter-
est toward the goal of automating EDA ([Amer-Yahia et al. 2023b]) to the point
where any user could perform this task. This goal fits into the larger objective
of automating Data Science ([De Bie et al. 2022]). These modern automated or
semi-automated EDA approaches can be classified into two categories according to
[Amer-Yahia et al. 2023b]. Generate and select approaches will extract insights,
queries, or both from a dataset and pick a few to present to the user. Meanwhile,
Guided EDA approaches are closer to the older query recommendation approaches
such as [Giacometti et al. 2009]. They generate EDA sessions one query at a time
and can often operate in a semi-automated mode.

2.5.1 Generate and select

Tang et al. ([Tang et al. 2017]) proposed an approach for extracting trend insights
from multidimensional data. They compute the top-k insights, i.e., having the high-
est interestingness measure. Unlike pattern mining, their measure is non-monotonic,
excluding traditional algorithms such as Apriori ([Agrawal & Srikant 2000]). They
instead exploit the multidimensional structure of the data to order and reuse com-
putation as well as introduce pruning rules. Ding et al. proposed QuickInsight
[Ding et al. 2019], a system for discovering a broad spectrum of insights (Change-
point, Correlation, Outlier, Seasonality, etc.) in multidimensional data. Unlike
[Tang et al. 2017] QuickInsight does not rely on an underlying multidimensional
database; it instead uses SQL and can interact with any DBMS. Quickinsight also
relies on ordering and caching to improve performance. An implementation of Quick-
Insight has been integrated into the production version of Microsoft Power BI2.
Metainsight [Ma et al. 2021] aims at organizing the knowledge conveyed by insights
extracted from multidimensional data in terms of commonness and exception. They
present their insight in an ordered fashion like [Tang et al. 2017], but instead of
relying solely on interestingness, they also consider the inter-pattern similarity and

2https://learn.microsoft.com/en-us/power-bi/create-reports/service-insights

https://learn.microsoft.com/en-us/power-bi/create-reports/service-insights

2.5. Automating Exploratory Data Analysis 11

potential overlaps. DataShot [Wang et al. 2020] aims at extracting insight and dis-
playing the most informative in an infographic sheet. The authors conducted an
extensive survey of expertly crafted infographics to associate various insights types
(trend, outlier, etc) with visualization types. They limit their search for insights
involving at most three attributes based on empirical observations. Unlike other
authors, Young et al. do not discuss the performance of their algorithms. This
is likely due to the small datasets used by the authors (at most 30k tuples and 9
attributes) and the hard limit on the search space. The Travelling Analyst Prob-
lem (TAP) belongs to the generate and select family. Indeed the TAP consists of
an optimization problem defined by an exhaustive set of queries or insights needed
to be arranged in a sequence of maximum interest, minimum time, and minimum
overall distance.

2.5.2 Guided EDA

Guided EDA method set themselves apart as their behavior is closer to older query
recommendation tools and human analysts than Generate and select methods.
Indeed they approach the EDA problem iteratively. Constructing sessions one
query at a Time. The first two approaches in this category, [Bar El et al. 2019]
and [Personnaz et al. 2021], rely on reinforcement learning (RL). They define a set
of operations either set oriented ([Personnaz et al. 2021]) or using the multidimen-
sional nature of the data ([Bar El et al. 2019]). These operations, combined with
a starting point, allow the agent to construct an EDA session. The agent acts to
maximize a reward function. In both works, it consists of a multi-faceted interest-
ingness measure that takes into account previous queries, which encourages coherent
sessions. The main drawback of those approaches is the considerable training time,
especially when it is repeated for each dataset. Another issue is the lack of ability to
discard a previous query if a better candidate is found later in the exploration. This
greedy one-query-at-a-time behavior can also be an advantage as it is easy to use
these methods as an assistant for semi-automated EDA where the user might only
want to generate one or two queries during its own session. The third approach,
Calliope ([Shi et al. 2020]), improves on DataShot by proposing a more efficient al-
gorithm. Calliope proposes a logic-oriented Monte Carlo tree search algorithm that
explores the data space and progressively generates insights, and organizes them in
a logical order. Like RL-based approaches, at each iteration, it maximizes a reward
function. It builds a tree where nodes are insights; and edges are transitions. A path
from the root to a leaf represents a sequence of insights the algorithm may output.
At each iteration, the tree can be altered in four ways: Select finds a node with the
largest reward, Expansion search for insights that are logically relevant, Simulation
explores several steps further, searching for the direction with the largest reward,
Back-propagation updates the weights of the nodes. Like DataShot, the output of
the algorithm is organized visually in an infographic sheet. Despite the advantages
of not having to enumerate all insights and having zero training time, the authors
only seem to demonstrate their algorithm on very small datasets (at most 1200

12 Chapter 2. Exploratory Data Analysis

tuples and 6 attributes).
With the growing prevalence of Large Language Models (Large Language

Model (LLM)) in the AI community ([Zhao et al. 2023]), we may soon witness
the emergence of EDA tools [Amer-Yahia et al. 2023a] based on LLMs. Such as
[Ma et al. 2023a], which augments EDA sessions produced by a traditional approach
([Tang et al. 2017]) with summaries created using an LLM. In this pioneering work,
the authors leverage Microsoft’s previous works on generate and select insight
extraction ([Ding et al. 2019, Ma et al. 2021]). The LLM serves as an interface be-
tween their traditional insight extraction algorithms and the user. It runs the insight
extraction in four different modes according to the perceived user intent and provides
a text summary of the discovered insight(s). Although this first work is promising,
some issues, such as data privacy and hallucination, may need to be resolved before
LLMs become widespread in EDA tasks [Amer-Yahia et al. 2023a]. In the future,
we might witness automated EDA approaches that are solely based on LLM. Some
data analysts have already taken it upon themselves to use LLM for that purpose
([Sawtell-Rickson 2023]).

2.5.3 EDA as an optimization problem

While guided EDA approaches can be compared to single query recommenda-
tion, generate and select approaches are close to another well-studied recommen-
dation problem, composite item recommendation. Composite Item (CI) address
complex information needs and are prevalent in problems where items should be
bundled to be recommended together [Amer-Yahia & Roy 2018], like in task as-
signments in crowdsourcing or travel itinerary recommendation. CI formation is
usually expressed as a constrained optimization problem, and different CI shapes
require the specification of different constraints and optimizations. Our formulation
of the TAP appears to be related to chain-shaped CIs (e.g., touristic itinerary, etc.)
[Roy et al. 2011, Cao et al. 2012, Gionis et al. 2014], that are traditionally defined
in terms of compatibility (e.g., geographic distance), validity (e.g., the total cost of
an itinerary is within budget) and maximality (e.g., the itinerary should be of the
highest value in terms of its points of interest popularities), this last one often being
used as the objective function. Retrieval of chain CIs is usually NP-hard, being
reduced to TSP or orienteering problems, and has been addressed through greedy
algorithms [Roy et al. 2011, Cao et al. 2012], dynamic programming or dedicated
TSP strategies [Gionis et al. 2014].

Our guided EDA problem appears close to chain CI recommendation. However,
these works often include a specific starting and ending point (e.g., hotel). We,
nonetheless, follow the same strategy as authors working on CIs. In the next chapter,
we formally define the TAP as an optimization problem, then we relate it to the
current operations research literature on transport problems with profits. Finally,
we discuss possible solution methods based on our analysis of the literature.

Chapter 3

The Traveling Analyst Problem

Contents
3.1 Introduction . 13
3.2 Operation research in a nutshell 14

3.2.1 Exact solution methods . 15
3.2.2 Heuristics . 18

3.3 The Orienteering problem . 19
3.4 Comparison queries . 21
3.5 Summary of contributions . 23

3.5.1 Enumeration of the complete set of queries 23
3.5.2 Intractability of the enumeration of the whole set of queries . 23

3.1 Introduction

The TAP was first described in [Chanson et al. 2020]. While some automated EDA
approaches ([Amer-Yahia et al. 2023b]) may generate queries as they construct a
session, the TAP involves constructing an ordered session from a known finite set
of queries Q. This set can be composed of any number and class of queries. In this
thesis, we consider Q to be the set of comparison queries (see Section 2.4) over a
given database.

Given this set of queries Q, the goal is to construct a sequence of queries. We
assume each query has an interest and a cost to run, and the distance between
queries is known. Thus, the goal is to produce a session of maximum interest,
minimum overall distance, and minimum cost. This can be formalized using the
following graph representation.

Definition 1 (TAP). Let G = ⟨Q,E⟩, with E = Q ×Q, be the complete, directed,
labeled graph where each node corresponds to a query in Q. For each vertex qi ∈ Q,
there are two labels: pi, its interest value, and ti, the cost associated with running the
query. Likewise, for each arc (qi, qj), there is a label dij corresponding to the distance
between the two queries qi and qj1. The objective of the TAP is to produce a sequence
s = [qa, qb...qfinal] over G, with no repetitions, such that the overall interestingness

1In this work, we assume distances are symmetric but may not always respect the triangular
inequality

14 Chapter 3. The Traveling Analyst Problem

score P̄ (s) =
∑|s|

i=1 pi is maximum, the overall distance D̄(s) =
∑|s|−1

i=1 di,i+1 is
minimum and the cost T̄ (s) =

∑|s|
i=1 ti is minimum.

As mentioned in Section 2.5.3, some problems close to the guided EDA can be
related to the traveling salesperson problem. The traveling salesperson problem and
many of its generalizations have been extensively studied by the operation research
community. By looking into its definition, we can classify the TAP as a TSP with
profits. Specifically, since its interest and cost objectives cannot be combined and
the interest cannot be expressed as a constraint, it belongs to the family of the
Orienteering Problem (OP) ([Feillet et al. 2005]). Like other extensions of the TSP,
the OP allows for a selection of nodes to be visited with a specific reward associated
with visiting a given node. The length of the circuit is often associated with a
constraint (e.g., the maximum range of a vehicle).

This chapter is organized as follows. We first discuss operations research and the
general principle for solving optimization problems. We then introduce literature
pertaining to the OP. Next, we introduce matheuristics, a fairly recent type of
heuristics. Then, we introduce the comparison queries that are used throughout
this thesis. Finally, we present a summary of the contributions of this thesis.

3.2 Operation research in a nutshell

Operations research (OR) is one of the oldest fields in computer science, emerging
in the 20th century and growing during the Second World War. During this time,
OR was used by allied military planners to better allocate assets and conduct more
efficient combat operations ([Kirby 2003]). Modern OR deals with the development
of analytical methods to solve decision or optimization problems. In this introduc-
tion, we focus on optimization problems and solution methods. Throughout this
section, we use the well-known knapsack problem to introduce the methods and the
terminology used by the OR community.

Example 2 (0-1 Knapsack Problem).
Given a set O of n objects, represented by their values pj ∈ N ∀j ∈ O and weights
wj ∈ N ∀j ∈ O, and W ∈ N the capacity of the knapsack.
We search for O∗ = argmaxO′∈O

∑
k∈O′ pk such that :

∑
k∈O′ wk ≤W

Instance and solution The set of all inputs used to solve an optimiza-
tion problem is referred to as an instance. For example, I1 = ⟨O =

{Ham,Banana,Milk},W = 12, pHam = 4, pBanana = 6, pMilk = 10, wHam =

8, wBanana = 8, wMilk = 4⟩ is an instance of the Knapsack Problem. For a given
instance, solutions to the problem can then be found. Here, given I1, the optimal
solution O∗ to this instance is {Banana,Milk} with an objective value of 16. Unless
specific proof is given, there is no guarantee of the uniqueness of the optimal solution
to an optimization problem. Any solution that satisfies the problem’s constraints is

3.2. Operation research in a nutshell 15

P

NP

NP-C NP-Hard

weakly

strongly

KS

Figure 3.1: Common complexity classes.

referred to as a feasible solution (e.g., {Ham,Milk}).2

Complexity Complexity theory provides us with a way of quantifying the time
taken by a computer to solve a problem. This time complexity can be given as a
function of the size of the problem instance. For our knapsack problem, the size
of the instance n is the number of objects, i.e., n = |O|. Another quantity of
interest given a problem instance is m, the magnitude of the largest number in the
instance, i.e., m =W +

∑
k∈O pk + wk for the knapsack problem. Simple problems

such as finding the minimum of a convex function fall into the P class (Figure 3.1):
they are problems optimally solvable in polynomial time of n. While NP-Hard
contains hard problems such as the knapsack problem or the traveling salesperson
problem ([Garey & Johnson 1990]), they cannot be solved in polynomial time of n.
The knapsack problem, in particular, has been shown to be weakly NP-Hard as
there are algorithms ([Kellerer et al. 2004]) which solve it in polynomial time of n
and m: such algorithms are referred to as pseudo-polynomial time algorithms. On
the other hand, strongly NP-Hard problems (Figure 3.1) cannot even be solved by
pseudo-polynomial algorithms.

When dealing with hard optimization problems, solution strategies are divided
into two broad categories: exact methods and heuristics.

3.2.1 Exact solution methods

There are many categories of exact methods. Dynamic programming-based algo-
rithms can be designed for problems that can be broken down recursively into sub-
problems. Dynamic programming algorithms take advantage of this structure to
efficiently reuse computations. For the knapsack problem, we can recursively solve
sub-problems involving the first j items of O. A dedicated algorithm that does
not rely on dynamic programming can also be designed to solve a specific problem.

2in this manuscript, we use the term instance to refer to the instance of an optimization problem
while, slightly abusing instance of a relation and the instance of a problem, whenever possible, we
refer to term relation for relation instance

16 Chapter 3. The Traveling Analyst Problem

Knapsack has many dedicated algorithms, such as the expanding core algorithm
([Pisinger 1995]).

Mathematical programming is a universal tool to model optimization problems
and can be used to construct a first exact solution algorithm. Let us construct a
mathematical model for our 0-1 Knapsack problem. First, we need a set of binary
variables to represent the choice of selecting an object or not:

∀k ∈ O, xk =

{
1 if object i is selected
0 otherwise

Then, the objective function, we want to maximize the profit selected items
bring: ∑

k∈O
xkpk (3.1)

Finally, we impose to our formulation to the capacity constraint of the knapsack
: ∑

k∈O
xkwk ≤W (3.2)

This particular mathematical model is referred to as a linear binary Integer Pro-
gram (IP), as it only contains binary variables and linear objectives and constraints.
There are many types of mathematical models like Mixed Integer linear Programs
(MIP), which contain a mix of integer and real variables, or Linear Programs (LP),
which only involve real variables. There are several more types of models we choose
to omit, including models based on quadratic objectives, constraints, or both; we
only focus on LP and MIP as they are used in this thesis.

Note that there exists an important relationship between MIP and LP. Relaxing
the integrality requirements on all the integer variables of a MIP (e.g., allowing
binary and integer variables to take real values in their domain) creates an LP we
refer to as the LP relaxation of the MIP. Solving to optimality, this LP relaxation
yields an upper bound in the case of a maximization problem on the objective value
of the optimal solution to the original MIP. Likewise, for a minimization problem,
the LP relaxation yields a lower bound.

Solution of LP and MIP Solutions to an instance, when represented using a
mathematical model, consists of the values of all its variables. Thus, the opti-
mal solution for I1 is (wHam = 0, wBanana = 1, wMilk = 1). Linear programs can
be solved in polynomial time ([Schrijver 1986, 172-180]). In practice, the simplex
algorithm and its many variants are commonly used by commercial ([IBM 2021])
and open-source solvers3, despite its exponential worst-case time complexity. For
solving generic IP and MIP, no polynomial algorithms can exist unless P = NP

3https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/

3.2. Operation research in a nutshell 17

([Schrijver 1986, 245-248]). However, generic exponential algorithms can success-
fully solve MIP with up to thousands of variables and constraints. Commercial
solvers, such as CPLEX ([IBM 2021]) and Gurobi ([Gurobi 2016]), and open-source
implementations, such as CBC4, use variations of a branch-and-cut algorithm to
solve any problem with some integer variables.

Branch-and-cut methods are themselves a variation of the branch-and-bound
algorithm. Both rely on the progressive construction and exploration of a search tree.
Leaves represent solutions where all variables are integers (e.g., for the knapsack, we
have decided to pick or not to pick each object) but not all leaves represent feasible
solutions. At the root node, an LP-Relaxation gives a bound on the objective
function and real values for each variable (e.g., for the knapsack, no object has been
picked or left out yet). Intermediate nodes are partially integral solutions where
some variables have been set to an integer (e.g., for the knapsack, some objects are
selected or not).

Solving the first LP relaxation at the root node, it is unlikely that all variables
have integer values, and we get the optimal solution without any work. Most of the
time, we have to start construction/exploration of the tree. From there, we keep
track of the best-known MIP feasible solution and use it as our lower bound. First,
choose a non-integral variable (e.g., with a value of 0.5) and branch creating two
nodes, one with the variable a value of 1 and the other with the variable having a
value of 0. Add those two nodes to the search tree. While the search tree is not
empty :

1. Pick a node on the search tree

2. Create an LP relaxation with the remaining free variables and solve it

3. Use the optimal LP solution to try to prune the node: (a) the LP is infeasible,
prune the node. (b) the optimal LP solution value of the node is lower than
the current lower bound, prune the node. (c) the optimal LP solution of the
node is feasible to the MIP (e.g., all variables have integer values). Update the
current lower bound and the best-known MIP solution, and prune the node.

4. If we cannot prune the node. We must branch. Choose a non-integral variable
and branch, creating two nodes. Add those two nodes to the search tree.

This is an oversimplified version of the algorithm used by modern solvers when
dealing with MIP. The Branch-and-cut variant adds special constraints to the LP-
relaxation named cuts that lower the gap between the optimal solution values of the
MIP and its relaxation. All steps of this algorithm have to take into account many
considerations that can dramatically change its performance. One of them is the
order in which to consider the nodes in the search tree. Improvements to branch-
and-cut methods to solve specific or generic MIP have been the topic of thousands
of publications in the OR community.

4https://coin-or.github.io/Cbc/intro

https://coin-or.github.io/Cbc/intro

18 Chapter 3. The Traveling Analyst Problem

3.2.2 Heuristics

Many NP−Hard problems require solutions for instances far beyond the size that
can be solved in a reasonable amount of time by exact methods. In this case,
heuristic methods are used: they cannot guarantee to find an optimal solution but
rather feasible solutions. Heuristics are usually designed for a specific problem,
following a more general principle such as Tabu Search or greedy heuristics.

Constructive heuristics iteratively build a solution. Greedy algorithms fall into
this category. A simple constructive heuristic for the knapsack problem can be
constructed by sorting objects in decreasing order according to pk/wk and inserting
them in order until W is reached.

Branching heuristics are similar to exact branch-and-bond methods in their use
of search trees to represent partial solutions. However, they only explore a fraction
of the search tree, losing all guarantees offered by their exact counterparts. For
example, the beam search only allows exploring b nodes on a level discarding others
based on a given criterion.

Finally, neighborhood-based heuristics rely on iteratively improving solutions.
They are often paired with a constructive or branching heuristic to construct a
"starting" solution. Alternatively, this initial solution may be randomly constructed.
At each iteration, neighborhood-based heuristics explore a neighborhood. It consists
of a limited set of solutions derived from their current solution(s). Simply varying
the definition of what constitutes the neighborhood of a solution, or introducing
diversification techniques, yields many variations on this principle. Well-known
heuristics such as tabu search, simulated annealing, and genetic algorithms belong
to this category.

Depending on the type of problem to be solved and the time and memory re-
sources available to solve it, one or more heuristic strategies may be designed. Some
heuristics may perform well on specific instances of a problem while yielding poor
performance on others.

Overall, heuristics represent an incredibly diverse and useful set of tools for
solving optimization problems. Recently the OR community has extended this set of
tools by adding a new type of heuristic that makes use of mathematical programming
and mathematical solvers: Matheuristics.

Matheuristics Among the heuristics available in the operations research com-
munity, matheuristics have been a matter of growing interest in the last decade
[T’Kindt 2023]. Matheuristics are a type of heuristics that make use of mixed integer
programming. [Fischetti & Fischetti 2018] define matheuristic as "the hybridization
of mathematical programming with metaheuristics". Matheuristics can be catego-
rized into three classes ([T’Kindt 2023]):

• constructive matheuristics iteratively build a solution like constructive heuris-
tics by using mathematical programming;

• local search matheuristics use a MIP to improve a known solution;

3.3. The Orienteering problem 19

• evolutionary matheuristics embed the solution of a MIP into an evolutionary
algorithm.

Local search matheuristic, like their traditional heuristic counterparts, are defined
by their way of constructing a neighborhood. They can be divided into two broad
categories depending on their definition of neighborhood. On one hand, local branch-
ing matheuristics rely on the distance to a known solution to define a neighbor-
hood [Fischetti & Fischetti 2018]. Typically, this is done through the variables of
a MIP. For example, with the 0-1 knapsack problem, we can use the values of
the binary variables of two solutions and compare them using Hamming distance
([Hamming 1950]). This distance is then used in the MIP to create a constraint
limiting the feasible solution to the neighborhood. On the other hand, matheuristic
such as Variable Partitioning Local Search (VPLS) or Fix and Optimize rely on
freezing a set of variables in a known solution, leaving the solver to modify only
parts of it ([Della Croce et al. 2013]). The selection of those variables depends on
the problem. The VPLS scheme has proved to be efficient on hard permutation
problems ([Della Croce et al. 2013, T’Kindt 2023]). All local search matheuristics
include intensification phases where the iteratively produces a higher-quality solu-
tion through local search. However, Local Branching also includes a diversification
step that can be triggered when no improving solution has been found in the neigh-
borhood at the previous iteration.

3.3 The Orienteering problem

The OP was first introduced and described by [Tsiligirides 1984]. The name is
derived from the orienteering sport, which involves competitors running from a
starting point to a finishing point within a specified time frame. Along the way,
they must pass through control points, each of which carries a different reward.
Formally, the OP is defined on a graph where each node is given a reward value and
each edge a distance. The objective is then to find a path (or tour) with maximum
collected reward between a known start (and end) node. A bound is set on the total
distance traveled between nodes (or total travel time) along this path.

Over the years, many extensions of the OP have been put forward. Recent sur-
veys [Vansteenwegen et al. 2011, Gunawan et al. 2016] have identified a few main
extensions of the orienteering problem. The simplest extension, called the Team Ori-
enteering Problem (TOP) involves multiple agents collaborating to gather rewards,
with the added constraint that the reward from a node can only be gathered once.
Adding time windows when the reward is available on nodes yields another variant,
called the Orienteering Problem with Time Windows (OPTW). The OPTW can
also be combined with multiple agents and is named Teams Orienteering Problem
with Time Windows (TOPTW).

For the OP, [Tsiligirides 1984] proposed two heuristics to solve it. The first
heuristic is based on a monte-carlo process generating several feasible solutions and
choosing the best one. The second heuristic is based on an earlier vehicle routing

20 Chapter 3. The Traveling Analyst Problem

heuristic by [Wren & Holliday 1972]. It relies on circular subdivisions of the Eu-
clidean space to construct solutions. A local search procedure called route improve-
ment ([Tsiligirides 1984]) is then used to improve solutions from both algorithms.
Route improvement alternatively tries to introduce new vertices without exceeding
the distance budget or shortening the path length by changing the order of vertices
in the route. [Chao et al. 1996] propose a two-step heuristic that first builds a set of
feasible solutions exploiting geometric features before applying a local search pro-
cedure to improve them. This procedure consists in exchanging vertices between
the current best solution and other feasible solutions to improve the former. Both
authors use geometric assumptions about the instances, namely a classic Euclidean
geometry. While Chao et al. also assume that if a straight path is drawn between
start and end vertices, then the high-value vertices should be further away from this
path than the low-value ones. This makes a direct adaptation of the heuristics for
the TAP difficult, although we note that both authors successfully use local search
to improve existing solutions, which may be useful in our work.

Several works describe exact methods for solving the OP. In
[Fischetti et al. 1998], a branch-and-cut algorithm is proposed and tested on
many instances, including those from [Tsiligirides 1984] but also larger ones with
up to 500 vertices. They manage to solve those large instances to optimality in
several hours. Most of the extensions of the OP tackled in the literature turn
out to be more complex to solve to optimality. [Bianchessi et al. 2018], propose a
branch-and-cut algorithm to solve the Team Orienteering Problem (TOP). This
algorithm relies on a MIP formulation, with a polynomial number of variables
and constraints, along with a custom branch-and-bound procedure. The authors
are able to optimally solve instances up to 102 vertices and 4 vehicles. Two MIP
formulations for the OP are proposed in [Kara et al. 2016] with a polynomial
number of constraints and variables. Both formulations are used to solve the
instances proposed by [Chao et al. 1996] and [Tsiligirides 1984]. However, they are
not tested on the larger instances of [Fischetti et al. 1998]. [Kara et al. 2016] differ
from previous works by using no custom branching routine, being solely reliant on
the solver to interpret their MIP formulation.

[Hu & Lim 2014], Hue and Linn tackle an extension of the OP, called the Team
Orienteering Problem with Time Windows (TOPTW), in which a set of identical
vehicles (with the same travel capabilities) are considered. A vertex can be visited
by only one vehicle, and the vertices can only be visited within their specified time
windows. Hu and Lim propose a metaheuristic to solve this problem. Several routes
are generated, one for each agent. Those routes are then stored in a fixed-size pool.
Routes from this pool are combined to form complete solutions for the problem.
The algorithm also features several operators enabling the crossover of routes or
swaps of vertices in a route to improve the built solutions. This work, along with
[Chao et al. 1996] and [Tsiligirides 1984], points out the importance of reordering
vertices when constructing solutions heuristically.

3.4. Comparison queries 21

Matheuristics Matheuristics have been used to solve extensions to the OP.
[Archetti et al. 2015],tackle the arc routing team orienteering problem by using a
matheuristic, which combines a tabu search and a MIP solver. The algorithm is
able to solve 78% of the tested instances to optimality. In [Yu et al. 2019], Yu et al.
focus on time-dependent profits and provide a matheuristic that yields high-quality
solutions for instances with up to 200 vertices. This algorithm first solves the prob-
lem of sequencing vertices before using a MILP solver to find appropriate service
times for the computed sequence.

Relation to the TAP Overall, the TAP is closer to the classic OP than its
variants. However, the TAP differs from the OP in a few key aspects. First, by
adding a knapsack constraint linked to a kind of service time necessary to collect
rewards on nodes. Secondly, although the OP often involves paths instead of tours
depending on the application for the TAP, every node is a potential end or start
point. This formulation is quite close to that of [Roy et al. 2011], but the latter
simplifies the problem by merging service times and travel times. In the case of
EDA, the distance has semantics in itself and cannot be made analogous to a travel
time or to a physical distance. Thus, it must be considered separately. These
differences appear to come from the fact that most applications of the OP and its
extension are to actual physical transport problems and not a conceptual one like
TAP.

3.4 Comparison queries

As the first contribution of this thesis, we introduce the comparison query. We
choose to focus our work on this operation as it is a major component of EDA ses-
sions ([Blount et al. 2020]). Comparisons are extremely popular among data work-
ers ([Zgraggen et al. 2018, Blount et al. 2020, Siddiqui et al. 2021]). Furthermore,
by limiting our work to a pattern of queries, we ensure the search space for the TAP
is finite and we can compute its cardinality.

Since comparisons frequently happen in practice, with a high risk of comparison-
based insights being spurious ([Zgraggen et al. 2018]), there is a need to auto-
mate the production of non-spurious comparison insights represented by comparison
queries.

Our work complements previous works in EDA ([Tang et al. 2017,
Ding et al. 2019]) that address other forms of insights. Noticeably, while we
restrict here to comparison insights, our approach can be extended to other forms
of insights, such as correlations.

Given a relation of schema R[A1, ...Ana ,M1, ...Mnm]with {A1, ...Ana} the set of
categorical attributes, noted A, likewise M for the set of measures {M1, ...Mnm}.
We note dom(Ai) the active domain of attribute Ai ∈ A. We also consider F the
set of aggregation functions. With a slight abuse of notations, R denotes both the
relation name and an instance of the relation, while |R| denotes the cardinality of

22 Chapter 3. The Traveling Analyst Problem

select t1.continent, April, May
from
(select month, continent, sum(cases) as April
from covid where month = ’4’ group by month, continent) t1,

(select month, continent, sum(cases) as May
from covid where month = ’5’ group by month, continent) t2

where t1.continent = t2.continent
order by t1.continent;

Figure 3.2: A SQL comparison query, its result, and an insight

the instance R.
We assume attribute names and values are two disjoint sets of constants with

total orders. Furthermore, the function D : A → N returns the number of constants
in the active domain of a given categorical attribute.

Definition 2 (Comparison query). The comparison query considered in this work
is phrased in extended relational algebra ([Garcia-Molina et al. 2002, 189-237]) as
follows:
τA((γA,agg(α)→left(σB=val(R))) ▷◁ (γA,agg(α)→right(σB=val′(R))))

where A is a categorical attributes taken in A, α is a measure inM, agg ∈ F is an
aggregate function, and B another categorical (distinct from A). Finally, val and
val′ are values in the domain of B.

For simplicity purposes, we work under the following assumptions: (i) a single
attribute is used to aggregate each query; (ii) a single measure is computed for each
query; (iii) all aggregation operators can be applied to all measures.

Note that our definition of comparison queries requires that a tabular presenta-
tion is used for the presentation of the result, hence the need for the join and the
projection in the outermost position. Alternatively, comparison queries could be
written without joins: γA,B,agg(M)(σB=val∨B=val′(R)). However, this would require
a pivot operation ([Cunningham et al. 2004]) to present the result in a suitable tab-
ular way. [Francia et al. 2021] experimented with the two forms, which appeared to
be similar in terms of execution cost.

3.5. Summary of contributions 23

Lemma 1 (Number of comparison queries). For a relation R where f aggregation
functions can be applied. We note Q, the set of all possible comparison queries over
R that follows the pattern of Definition 2. Its cardinality is:

|A|∑
i=1

(
|dom(Ai)|

2

)
× (|A|−1)× |M|×f

Example 3 (Sequence of comparisons).
An example of a comparison query for the analysis of COVID-19 infections is given
in Figure 3.2. When applying TAP to comparison queries, its solution is a sequence
of comparison queries. It could start with the query of Figure 3.2; the next query
would change the measure (replacing cases by deaths). The next one changes the
aggregation function (replacing sum by average), then changes the selection by com-
paring months 5 and 6. Finally, the last query could group by countries instead of
continents (keeping the same selections).

3.5 Summary of contributions

The contributions of this thesis are organized into two categories and three chapters.
First, we discuss cases where we generate the complete set Q of all comparison
queries on a database. Then we propose to forgo this step and solve the TAP
without generating Q.

3.5.1 Enumeration of the complete set of queries

Our first contributions, presented in Chapters 4 and 5, are focused on building and
solving instances of TAP with hundreds to hundreds of thousands of queries. We
propose a MIP model and use a solver to solve a diverse panel of artificial and real
TAP instances with up to 500 queries. We propose a matheuristic approach to speed
up this process and allow instances with up to 700 queries to be solved with close
to optimal solutions in minutes. We then propose two metaheuristics capable of
scaling to instances with hundreds of thousands of queries. Finally, we apply TAP
to a real-world EDA scenario where even the construction of the problem is shown
to be unpractical for the largest databases.

3.5.2 Intractability of the enumeration of the whole set of queries

Our last contribution, described in Chapter 6, aims to propose an alternative to the
lengthy generation of the TAP instances while maintaining the quality of solutions
offered by a complete enumeration of the search space. We also wish to provide an
alternative to costly reinforcement learning based approaches and greedy algorithms
(see Chapter 2). To this extent, we draw inspiration from the column generation ap-
proach used in the OR community. We propose a method to build an instance orders
of magnitude smaller than the complete instance and solve it using the matheuristics

24 Chapter 3. The Traveling Analyst Problem

previously introduced. We show that our proposed method is faster and produces
better solutions than solving an entire instance of the TAP heuristically.

Chapter 4

Results on enumerable space

Contents
4.1 Introduction . 25

4.2 A mixed integer formulation 26

4.3 Preprocessing the set of queries 27

4.4 Heuristics . 29

4.4.1 Initial heuristics . 29

4.4.2 Matheuristics . 31

4.5 Experiments . 35

4.5.1 Computation of optimal solutions 36

4.5.2 Evaluation of pseudo-dominance and filtering 38

4.5.3 Initial heuristics . 42

4.5.4 Comparison of the matheuristics with optimal solutions . . . 42

4.5.5 Performance on larger instances 45

4.6 Conclusion . 47

4.1 Introduction

In this chapter, we formally define the TAP problem and propose optimal solutions
through solving a Mixed Integer Programming (MIP). Additionally, we introduce
heuristics inspired by Knapsack and Travelling Salesperson Problem (TSP) heuris-
tics and matheuristics for the TAP.

Assuming that we dispose of a set of database queries Q, the TAP can be defined
on a graph G = ⟨V,E⟩ in which each vertex vi ∈ V represents a query. An edge
(vi, vj) ∈ E represent the action of running query vi before vj . To meet the three
requirements of EDA sessions, we introduce for each vertex vi ∈ V an interesting-
ness score pi and a service time ti. Besides, for each edge (vi, vj) ∈ E, we introduce
dij as the distance between the two queries. The objective of the TAP is to produce
a routing s over G such that the overall interestingness score P̄ (s) =

∑|s|
i=1 pi is

maximum, the overall distance D̄(s) =
∑|s|−1

i=1 di,i+1 is minimum and the service
time T̄ (s) =

∑|s|
i=1 ti is minimum. When there is no ambiguity regarding the rout-

ing/solution s we use P̄ , D̄ and T̄ instead of P̄ (s), D̄(s), and T̄ (s). The TAP has
been shown to be strongly NP-Hard in [Chanson et al. 2020].

26 Chapter 4. Results on enumerable space

The TAP is a multi-objective optimization problem. Thus the optimal solution
to a TAP instance is not unique but a set of incomparable solutions called Pareto
optima ([T’kindt & Billaut 2006]).

Definition 3 (Pareto Set of TAP). Let S be the set of feasible solutions to a TAP
instance. The set of Pareto optima of a TAP instance is P = {s ∈ S : ∄s′ ∈
S, P̄ (s′) ≥ P̄ (s) ∧ D̄(s) ≥ D̄(s′) ∧ T̄ (s) ≥ T̄ (s′), with at least one strict inequality}.
A solution s ∈ P is called a Pareto optimum.

In this work, we assume that the user can formulate and adjust a bound on
T̄ (s) based on the time they allow for query execution. Likewise, they can use
a bound on D̄(s) to create more or less explorative sessions (depending on the
distance function chosen) that either explore a few dimensions and measures or
allow a broader picture of the database. This enables us to use the ε-constraint
method ([T’kindt & Billaut 2006]) to compute a Pareto optimum for the TAP: we
maximize P̄ under the constraints that T̄ ≤ εt and D̄ ≤ εd. This method enables the
enumeration of all Pareto optima by solving this constrained problem with different
(εt, εd) values.

This chapter first will introduce a MIP model for the TAP problem, then in
Section 4.3 discuss methods for reducing instance size. In Section 4.4, we introduce
heuristics and matheuristics adapted to TAP. Finally, Section 4.5 provides detailed
experiments evaluating the heuristics using artificial instances.

4.2 A mixed integer formulation

Let us introduce a MIP formulation of the ε−constrained TAP. This model relies
on two sets of binary variables to represent vertices selection and sequencing of the
selected vertices. We have:

∀i ∈ 1..n, yi =

{
1 if vertex i is selected
0 otherwise

and

∀i, j ∈ 0..n+ 1, i ̸= j, xij =

{
1 if vertex i precedes vertex j
0 otherwise

We also introduce integer variables ui ∈ {2, ..., n}, ∀i ∈ 1..n , used for sub-tour
elimination.

Objective

max
n∑

i=1

piyi (4.1)

4.3. Preprocessing the set of queries 27

Constraints
n∑

i=1

n∑
j=1,j ̸=i

di,jxi,j ≤ εd (4.2)

n∑
i=1

tiyi ≤ εt (4.3)

n∑
i=0,j ̸=i

(xi,j)− yj = 0,∀j ∈ 1..n (4.4)

n+1∑
j=1,j ̸=i

(xi,j)− yi = 0, ∀i ∈ 1..n (4.5)

n∑
j=1

x0j =
n∑

i=1

xi,n+1 = 1 (4.6)

ui − uj + 1 ≤ (n− 1)(1− xij), ∀i, j ∈ 1..n, i ̸= j (4.7)

This model involves (n2 + 5n+ 1) variables and (n2 + 2n+ 4) constraints. The
objective (4.1) aims to maximize the total score, i.e. the interestingness of the
sequence of vertices. Constraint (4.2) ensures that the total distance does not exceed
a threshold εd. Similarly constraint (4.3) ensures that the total service time does
not exceed a threshold εt. Constraints (4.4) and (4.5) ensure the solution is a path
(if a vertex is selected in the solution, then one arc must enter it and one must exit
it). Constraint (4.6) ensures there is only one start and one end vertex. Finally, we
use classic TSP sub-tour elimination constraints (4.7) to ensure a single sequence is
computed. Here, we chose those presented in [Miller et al. 1960].

4.3 Preprocessing the set of queries

The multi-objective nature of the TAP is useful as it enables us to propose a method
for reducing the sizes of instances before solving them. In order to do so we first need
to establish several properties of the TAP instances, notably a dominance condition
on vertices.

Definition 4 (Dominance condition). ∀vi ̸= vj ∈ V, vi dominates vj iff ti ≥
tj , pj ≤ pi and ∀vk ∈ V \ {vi, vj}, dik ≤ djk, with at least one strict inequality.

Lemma 2 (Dominated vertices in Pareto optima). ∀s ∈ P,∀vi ∈ s, ∀vj ̸= vi ∈ V ,
if vj dominates vi then vj ∈ s
Proof: Let s ∈ P be a Pareto optimum and two vertices vi and vj such that vi ∈ s,
vj /∈ s and vj dominates vi. Construct s′ by replacing vi by vj in s. Then, we have
P̄ (s′) ≥ P̄ (s), D̄(s′) ≤ D̄(s) and T̄ (s′) ≤ T̄ (s) with at least one strict inequality,
which contradicts the fact that s ∈ P.

28 Chapter 4. Results on enumerable space

This dominance can be exploited when solving the TAP, as it yields constraints
that simplify the problem, if selecting a vertex in the solution all vertices dominating
it must also be included. However, as this dominance condition is unlikely to be
satisfied in most instances due to the very restrictive condition on distances, we
propose another condition.

Definition 5 (Pseudo-dominance condition).

∀vi ̸= vj ∈ V, vj pseudo-dominates vi iff tj ≥ ti, pj ≤ pi(Also noted vi ≺ vj)

With at least one strict inequality.

Unlike the dominance condition stated in Definition 4, the pseudo-dominance
stated in Definition 5 is not a dominance condition as applying it may lead to
discard optimal solutions. Applying the pseudo-dominance condition we define the
notion of pseudo dominance set.

Definition 6 (Pseudo-dominance set). Given an instance, let the
pseudo-dominance set of a vertex vj be:

Ij = {vi ∈ V : vj ̸= vi, vj ≺ vi}

As previously mentioned, the dominance condition is unlikely to happen in prac-
tice. The pseudo-dominance condition may be used to prune the search space in the
context of a heuristic solution of the TAP. The benefits of using pseudo-dominance
conditions will be evaluated in Section 4.5. Pseudo-dominance conditions can be
used during the solving process as follows: whenever a vertex vj is selected, all
vertices in its pseudo-dominance set Ij are also selected.

Since this work focuses on solving the ε-constrained TAP, we can exploit those
ε-constraints (equations (4.2), (4.3)) along with the pseudo-dominance conditions
in order to filter any given instance.

Let N be an upper bound on optimal solution sizes, i.e., such that |V |≥ N ≥ |s|
for any optimal solution s. In this chapter, N is computed as N = min(k, k′), where
k and k′ are two bounds calculated by exploiting the ε-constraints of the problem.
Assume that service times are ordered such that t1 ≤ ... ≤ t|V |. Then, k is defined as∑k

j=1 tj ≤ εt <
∑|V |

j=1 tj . Besides, k′ is obtained by solving a relaxation of the TAP
in which all pi are set to 1, the ε−constraint on T̄ is dropped along with sub-tour
elimination constraints. An optimal solution to this relaxed problem is found in
polynomial time by constructing the shortest 2-cycles between vertices until εd is
reached.

For any given instance we can use the pseudo-dominance sets of vertices and the
bound N to design a filtering step: remove vertices vi such that |Ii|> N , as any
vertex with a pseudo-dominance set larger than N is unlikely to be in an optimal
solution. Remember that this filtering is not optimal as the pseudo-dominance
condition may lead to considering vertices as dominated while they are part of some
optimal solutions. However, we will see in practice how impacting is this filtering.

4.4. Heuristics 29

Pseudo-dominance condition based constraints Using Definition 5, we also
propose to add an additional set of constraints to the MIP defined in Section 4.2.

yi ≤ yj ,∀i ∈ 1..n,∀j ∈ Ii (4.8)

However, it is important to mention that adding those constraints may lead to
the optimal solution being infeasible as they are based on the pseudo-dominance
condition. We evaluate the impact of adding these constraints in Section 4.5.

4.4 Heuristics

In this section, we present two heuristics and four matheuristics to solve the TAP.
We introduce the heuristics first, as matheuristics rely on their solutions to start.
The importance of those initial solutions given to the matheuristics is crucial, as
the matheuristics can be seen as metaheuristics, which iteratively improve a base
solution. Hopefully, the latter is obtained quickly and is sufficiently good so that
the matheuristic can reach near-optimal solutions in a few iterations. Furthermore,
when the matheuristic cannot be used, the initial solutions may be the only available
solutions to a TAP instance.

4.4.1 Initial heuristics

We first introduce two different heuristics to construct TAP solutions. The first
one, called h-ks, runs in O(n2) time and exploits the knapsack structure of the
problem. Algorithm 1 introduces nodes (queries) in the TAP solution according to
the decreasing order of their ratio pi/ti, until constraints (4.2) and (4.3) prevent for
more insertions. In addition to this classic knapsack heuristic, whenever a vertex is
selected, it is inserted at the position in the partial solution, which minimizes the
D̄ criterion of the selected solution under construction.

The second algorithm, called h-tsp, is an approach inspired by sub-tour merging
heuristics for the traveling salesperson problem (TSP). This algorithm produces
two solutions which are compared, and the best one is returned. The algorithm
(see Algorithm 2 and Figure 4.1) starts by solving a relaxed version of the TSP
over G with distances dij when sub-tour elimination constraints are removed. This
yields an assignment problem that is solved by the successive shortest path method
([Engquist 1982]) in O(n3log(n)) time (Line 1). This may lead to a potentially
non-feasible solution composed of sub-tours (see step a○ Figure 4.1). From this
point, the algorithm computes two solutions. First to compute, Solution A, the
algorithm merges all sub-tours (see step b○ Figure 4.1). This step is skipped
if the assignment problem solution comprises a single tour (Line 4). Sub-tours
are merged by implementing the minimum spanning tree approach described in
[Kahng & Reda 2004] (Line 6). This merging approach was chosen as it outperforms
other tour construction heuristics ([Kahng & Reda 2004]). Since after merging sub-
tours, the distance and/or time ε-constraint may be violated, we design an additional

30 Chapter 4. Results on enumerable space

Algorithm 1 Knapsack inspired Heuristic (h-ks)
Require: A set of nodes Q with their interest ti, time qi and distances dij , and two

reals εt (time bound), εd (distance bound).
Ensure: a feasible solution to the TAP, of total service time at most εt and overall

distance at most εd
1: for q ∈ Q do
2: weight(q)← pq/tq
3: end for
4: Q← sort Q by weights in decreasing order
5: t← 0

6: S ← []

7: for q ∈ Q do
8: S← the set of possible unique insertions of q in S
9: dmin ← minS′∈S(

∑|S′|
i=1 di,i+1)

10: if t+ tq < εt and dmin < εd then
11: S ← argminS′∈S′(

∑|S|
i=1 di,i+1)

12: t← t+ tq
13: end if
14: end for
15: return S

Algorithm 2 TSP inspired Heuristic (h-tsp)
Require: A set of nodes Q with their interest ti, time qi and distances dij , and two

reals εt (time bound), εd (distance bound).
Ensure: a feasible solution to the TAP, of total service time at most εt and overall

distance at most εd
1: T ← solve_assignment(Q, dist) ▷ We get a set of sub-tours by solving the

assignment problem for the given vertices and distance function
2: —Solution A—
3: if |T |= 1 then
4: Sa ← T

5: else
6: Sa ← merge(T)
7: end if
8: if

∑|Sa|
i=1 di,i+1 > εd or

∑|Sa|
i=1 ti > εt then

9: Sa ← prune(Sa)

10: end if
11: —Solution B—
12: T ′ ← solve multi-dimensional knapsack with sub-tour as elements
13: Sb ← merge(T ′)

14: return best(Sa, Sb)

4.4. Heuristics 31

Figure 4.1: General principle of h-tsp for generating Solution A (top) and Solution
B (bottom) starting from a solution to the assignment problem over the distance
matrix

reduction step to fix this issue (see step e○ Figure 4.1, Line 9). First, if the ε-bound
on time is not answered, queries are eliminated in increasing order of their ratio pi/ti
until it is no longer violated. Then, if the ε-bound on distance is not respected,
queries are eliminated in increasing order of pi value, every η eliminated queries the
LKH heuristic 1 reoptimizes the tour ([Helsgaun 2000]).

Solution B is obtained by considering all sub-tours as single elements in a
Multi-Dimensional Knapsack. Each sub-tour is associated to its total length, service
time, and interestingness score (see step c○ Figure 4.1). This Multi-Dimensional
Knapsack problem is solved to extract a set of sub-tours that are next merged (see
step d○ Figure 4.1, Line 12) using the same merging approach as Solution A (Line
13). The same reduction step as Solution A can be applied if any ε-constraint is
violated.

Finally, Solution A and Solution B are compared, and the best (feasible) one
in terms of P̄ value is returned.

4.4.2 Matheuristics

In this section, we propose four matheuristics to solve TAP. They belong to two
distinct families of matheuristics. The first two are based on the VPLS principle, and
the other two use a local branching constraint. We briefly discuss both approaches
and present the four algorithms.

1We use the implementation provided by Helsgaun http://webhotel4.ruc.dk/~keld/
research/LKH/

http://webhotel4.ruc.dk/~keld/research/LKH/
http://webhotel4.ruc.dk/~keld/research/LKH/

32 Chapter 4. Results on enumerable space

Figure 4.2: Example of a solution improved by the VPLS algorithm

4.4.2.1 VPLS

The VPLS method improves an incumbent solution by iteratively reoptimizing a
part of it. As the re-optimization is done via the solution of a MIP, at each iteration,
two sets of variables are defined. One set of variables is fixed as in the incumbent
solution, while the variables of the other set are set free so that they define a small
MIP to be solved. Hopefully, this new small MIP can be solved quickly. In the case
of the TAP, the solution is a sequence: thus, we apply the VPLS method by selecting
a sub-sequence of vertices (called the re-optimization window) and by freezing the
remaining vertices of the solution. Given a solution st at iteration t, let us denote
by wstart (respectively w) the starting position (respectively length) of the window.
Given a TAP solution st, let st[a : b] be the sub-sequence starting from position
a and ending at position b (inclusive). The set of variables fixed to their current
values for iteration t+ 1 is defined as:

Ft+1 = {yi, i ∈ st \ st[wstart : wstart + w]}
∪{xij , i ∈ st \ st[wstart : wstart + w], j ∈ 1..n, j /∈ st[wstart : wstart + w]}
∪{xji, i ∈ st \ st[wstart : wstart + w], j ∈ 1..n, j /∈ st[wstart : wstart + w]}

(4.9)

VPLS is an iterative process that can be stopped by a specific convergence
criterion like a maximum time limit or a maximum number of iterations.

We provide an example in Figure 4.2. Figure 4.2.a shows the current feasible
solution st = [v9, v1, v3, v8, v2, v7] at iteration t, together with the unselected vertices
{v4, v5, v6}. Assume that we decide to reoptimize the window [v3, v8], which is
represented by dotted arrows. Figure 4.2.b shows st+1 = [v9, v1, v4, v8, v2, v7] which
is the solution obtained after solving the corresponding MIP with a reduced set
of variables. One of the key points of VPLS is the choice of the re-optimization

4.4. Heuristics 33

window at each iteration. We propose two methods, and both assume that the
window length w is a given parameter. The first heuristic, called vpls-det, described
in Algorithm 3, moves the re-optimization window from the start to the end of the
sequence. An additional parameter o may induce an overlap of windows between
iterations if set to a non-zero value by the user. This window is positioned back at
the beginning of the sequence when, at an iteration t, the solution is improved. The
second heuristic called vpls-random and described in Algorithm 4, randomly selects
the window along the sequence.

Algorithm 3 vpls-det
Require: An instance (scores, service times, distances, εt, εd), the window width w,

window overlap o, mit the maximum number of iterations, and tit the maximum
iteration time. A feasible solution sf

Ensure: A solution to the TAP of service-time at most εt and overall distance at
most εd.

1: t← 0

2: st ← sf

3: wstart ← 0

4: while t < mit do
5: st+1 ←MIP (st, wstart, w, tit) ▷ solve reduced MIP
6: if P̄ (st+1) > P̄ (st) then
7: wstart ← 0

8: st ← st+1

9: else
10: wstart ← wstart + w − o
11: end if
12: if wstart + w > |st| and P̄ (st) = P̄ (st+1) then
13: return st

14: end if
15: t← t+ 1

16: end while
17: return st

4.4.2.2 Local branching

The two other matheuristics we introduce are direct applications of the Local
Branching ([Della Croce et al. 2013]) method with no diversification phase. They
rely on the Hamming distance ([Hamming 1950]) between the two sets of decision
variables of the MIP, as described in Section 4.2: variables yi represent the presence
or absence of a vertex in the solution while the xi,j ’s represent the order between
selected vertices. Thus, any two solutions can be compared by their Hamming dis-
tance, either on the complete set of decision variables or on a subset. For example,
assume it is computed w.r.t. only the xij ’s, then the Hamming distance ∆(x, xs) to
a known solution xs is given by:

34 Chapter 4. Results on enumerable space

Algorithm 4 vpls-random
Require: A TAP instance (scores, service times, distances, εt, εd), the window

width w, mit the maximum number of iterations, and tit the maximum iteration
time. A feasible solution sf

Ensure: A solution to the TAP of service-time at most εt and overall distance at
most εd.

1: t← 0

2: st ← sf

3: while t < mit do
4: wstart ← pick a random window starting position
5: st ←MIP (st, wstart, w, tit) ▷ solve reduced MIP. Note that the solution

returned is at least as good as the original in terms of objective.
6: t← t+ 1

7: end while
8: return st

∆(x, xs) =
n∑

i=1

n∑
j=1

xij ⊕ xsij (4.10)

With ⊕ the binary XOR operator, or without (a formulation more adapted to a
MIP solver) :

∆(x, xs) =
n∑

i,j=1,xs
ij=1

(1− xij) +
n∑

i,j=1,xs
ij=0

xij (4.11)

This distance can be used to build a constraint that effectively constrains the
solver to search in the neighborhood of an incumbent solution. In contrast to the
VPLS approaches, which are limited to modifications within a specific sub-sequence,
this approach enables broader transformations of the solutions, such as swapping the
first vertex and the last vertex of the solution. The two local branching heuristics
we propose are denoted by lb-y and lb-yx and are described in Algorithm 5. They
simply vary on the constraints they use, (4.12) for lb-y and (4.13) for lb-yx. Let st

be the best solution known at iteration t and let (xt, yt) be its associated binary
variables in vector form. Then, we can express the following constraints:

∆(y, yt) < h (4.12)

∆(x, xt) + ∆(y, yt) < h (4.13)

with h a parameter limiting the maximum number of variables to be changed.

4.5. Experiments 35

Algorithm 5 lb-y / lb-yx
Require: A TAP instance (scores, service times, distances, εt, εd), the maximum

hamming distance h, mit the maximum number of iterations, and tit the max-
imum iteration time. A feasible solution sf . A hamming distance based con-
straint: C, either constraint (4.12) or (4.13).

Ensure: A solution to the TAP of service-time at most εt and overall distance at
most εd.

1: t← 0

2: st ← sf

3: while t < mit do
4: st ←MIP (st, C, tit)
5: t← t+ 1

6: end while
7: return st

4.5 Experiments

We organize this experimental section as follows: first, we describe different types
of TAP instances and their properties; second, we evaluate the performance of the
MIP in a state-of-the-art solver; third, we focus on the impact of filtering and adding
constraints. Finally, we focus on the performance of heuristics and matheuristics.

For all experiments, we used CPLEX solver version 20.10 running on a Fe-
dora Linux workstation, with two 2.3 Hz Intel Xeon 5118 with 377GB of memory.
To show realistic running times, the CPLEX solver is run in single-thread mode
whenever a MIP model has to be solved. We provide an open-source implemen-
tation of all algorithms in our Git repository https://github.com/AlexChanson/
TAP-Matheuristics. This repository also contains all TAP instances used in this
chapter.

To the best of our knowledge, no suitable benchmark for our problem is available
in the OR literature. This is due to the added service time and the use of a distance
with no triangular inequality. Although some databases are commonly used in
works pertaining to EDA since there is no agreement on a ’universal’ interestingness
measure or even distance between queries, we cannot find a suitable benchmark in
the database literature either. Instead, we use four families of randomly generated
instances.

• The first family of instances, denoted by f1, is designed to mainly ressemble
knapsack instances. The interestingness score is a real number drawn from
a uniform distribution between 0 and 1. The distance is an integer number
drawn from a uniform distribution between 5 and 6. Finally, the service time
is an integer number drawn from a uniform distribution between 5 and 50.

• The second family of instances, denoted by f2, is designed to mainly ressemble
TSP instances. The interestingness score is an integer number drawn from

https://github.com/AlexChanson/TAP-Matheuristics
https://github.com/AlexChanson/TAP-Matheuristics

36 Chapter 4. Results on enumerable space

a uniform distribution between 1 and 3. The distance is an integer number
drawn from a uniform distribution between 1 and 14. Finally, the service time
is an integer number drawn from a uniform distribution between 5 and 6.

• The third family of instances, denoted by f3, is designed to contain particu-
larly hard knapsack instances (service time and interest are strongly correlated
[Pisinger 2005]), while still having a strong routing component. The distance
is an integer number drawn from a uniform distribution between 1 and 10.
The service time is an integer number drawn from a uniform distribution be-
tween 5 and 50. The interestingness score is equal to the service time plus 5.
Note that, due to this correlation, the pseudo-dominance conditions are never
satisfied for any pair of queries in those instances.

• The last family of instances, denoted by f4, are closer to real world instances.
The interestingness score is a real number drawn from a uniform distribution
between 0 and 1. The distance is an integer number drawn from a uniform
distribution between 1 and 10. Finally, the service time is an integer number
drawn from a uniform distribution between 5 and 50. These constants are
coherent with the ranges observed in real-world instances we generated in one
of our papers ([Chanson et al. 2022a]).

For each family of instances, we generate 30 instances for each size n ∈ {40, 60,
80, 100, 200, 300, 400, 500, 600, 700}.

4.5.1 Computation of optimal solutions

As previously stated, we focus on developing algorithms solving ε-constrained TAP
instances. In this series of experiments, we intend to fix εt and εd to simplify the
interpretation of results. However, we must select values that do not yield TAP
instances that are trivial to solve. Due to the varying size of instances, we express
εt and εd as the expected fraction of queries in the instances in the solution. For
example, if εt is set to 0.35 for 200 vertices, it means we expect that the time
constraint will, on average, lead to solutions containing 70 queries. By choosing
different values for εt and εd we can make one ε−constraint more restrictive than
the other.

We speculated that some combinations of ε−constraints may result in instances
that are relatively trivial to solve. We measured the time taken by CPLEX solving
the MIP proposed in Section 4.2 to produce an optimal solution on 30 instances of f4
with 300 nodes, with various ε−constraints combinations. We report those results
in Figure 4.3. We decide on εt set to 0.6 and εd set to 0.3 for the remainder of this
work. As this appears to be a hard scenario for the solver, but it is still practically
possible to obtain optimal solutions in one hour or less.

Finally, we repeat the previous experiment and increase the instance size to 500
nodes. As seen in Figure 4.4, with most configurations solving the MIP takes on
average an hour making practical scaling beyond 500 node instances impossible.

4.5. Experiments 37

Figure 4.3: Average time taken by CPLEX to solve an instance (300 vertices) from
set f4 to optimallity

Table 4.1: Time taken by CPLEX to solve the TAP to optimality on different
instance sizes

#Queries Time (s) %Timeouts
avg min max

100 1.61 0.65 8.14 0
200 28.47 3.12 126.92 0
300 239.83 12.28 963.55 0
400 727.90 24.47 1667.2 0
500 1869.75 166.15 > 3600 23.3
600 1343.89 240.06 > 3600 86.7
700 100

38 Chapter 4. Results on enumerable space

Figure 4.4: Average time taken by CPLEX to solve an instance (500 vertices) from
set f4 to optimallity

For a fixed pair of ε−constraint (εd = 0.4, εt = 0.2), we scale the instances up
to 700 nodes (30 instances per size). We report the runtimes (minimum, average
and maximum) and number of timeouts in Table 4.1.

4.5.2 Evaluation of pseudo-dominance and filtering

In this section, we evaluate the effectiveness of filtering and constraints based on
pseudo-dominance conditions. Both approaches were proposed in Section 4.3. We
only conduct experiments on instances of the family f4, as for those of family f3
pseudo-dominance conditions never apply.

First, we propose to evaluate the impact of adding constraints based on the
pseudo-dominance condition to the solution of the MIP. We use CPLEX with de-
fault parameters and a timeout of two hours, with and without these conditions. In
Table 4.2 we report the average and maximum number of nodes #Nodes explored by
CPLEX, and the average and maximum deviation, respectively ∆avg and ∆max from
the optimal solution value (computed without pseudo-dominance). Finally, we re-
port the average and maximum time gained ∆Tavg and ∆Tmax compared to CPLEX
without pseudo-dominance: negative values denote longer run-time over the vanilla
solver. In a set of preliminary experiments, it was noted that the pseudo-dominance
conditions produced a large number of constraints, potentially slowing the solver.
Thus, we only report results where we add a fraction of the valid constraints, which

4.5. Experiments 39

is achieved by only selecting constraints that relate to vertices with dominance sets
larger than κ× |V |, with κ ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

Table 4.2 shows that adding the constraints (even partially) seems to marginally
degrade the solution quality. However, this approach always requires more CPU
time than CPLEX to solve instances. Even with very few added constraints. We
note, though, that the best-case scenario seems to be for κ = 0.8.

As we may eventually use pseudo-dominance conditions in the matheuristics, we
test the solution quality of CPLEX alone, against CPLEX with added constraints
(for κ = 0.8) in a limited 60 seconds time budget. Typically, this could be the time
taken by one iteration of the matheuristics. Solution quality is reported in terms of
average relative deviation to the optimal solution in Table 4.3.

Size ∆avg CPLEX (< 60s) ∆avg CPLEX (< 60s) with pseudo-dominance (κ = 0.8)
40 0 0
60 0 0
80 0 0
100 0.05 0.14
200 30.23 9.31
300 91.11 90.71
400* 99.69 99.68

Table 4.3: Average relative deviation to the optimal solution objective after 60 sec-
onds for various instance sizes (* deviation reported against near-optimal solutions,
MIP gap < 1%)

Results from Table 4.3 show that the approach can provide some significant
improvement to solution quality for instances up to 200 nodes. While they seem to
have no effect on larger instances. As the matheuristics where these constraints may
be applied will eventually be used to tackle larger instances of TAP (>300 nodes)
where the mathematical solver is too slow, we choose to discard this approach for
the remainder of this work.

For the filtering approach (see Section 4.3), a preliminary test was first conducted
to evaluate the number of vertices the filtering step removes on instances of family
f4. The results are reported in Table 4.4. This shows that applying the method
based on the computed bound N only filters out about 3% of the vertices. This is
unlikely to be enough to achieve significant performance improvements.

40 Chapter 4. Results on enumerable space

κ Size ∆avg ∆max ∆Tavg (s) ∆Tmax (s) #Nodesavg #Nodesmax

0 40 0 0 0 0 0 0
60 0 0 0 0 0 0
80 0 0 0 0 0 0
100 0 0 0 0 0 0
200 0 0 0 0 0 0
300 0 0 0 0 0 0

0.2 40 0 0 -0.74 0.2 69 580
60 0 0 -1.51 0.84 129 1443
80 0 0.01 -1.86 17.21 118 1191
100 0 0 -45.02 51.98 575 3629
200 0 0.01 -1003.11 1743.38 1702 5950
300 1.98 21.83 -2363.51 404.39 1720 4265

0.3 40 0 0 -0.39 0.44 66 630
60 0 0 -1.01 2.43 83 1024
80 0 0.01 -2.67 17.77 197 1000
100 0 0 2.36 99.35 333 2104
200 0 0.01 -679.46 2068.54 1423 3326
300 0.05 0.52 -2985.96 -408.19 1748 2804

0.4 40 0 0 -0.4 0.08 67 503
60 0 0 -1.17 1.9 68 671
80 0 0.01 1.34 19.96 42 494
100 0 0.01 -10.26 68.16 433 2144
200 0 0.01 -196.64 2043.44 1316 4549
300 0 0.01 -2099.43 916.81 1351 2717

0.5 40 0 0 -0.45 0.4 71 585
60 0 0.01 -0.52 1.63 48 490
80 0 0.01 -1.54 18.96 149 772
100 0 0 -10.77 95.47 558 2560
200 0 0.01 -489.51 1495.5 1457 3434
300 0 0 -978.76 451.26 974 1584

0.6 40 0 0 -0.39 0.49 78 482
60 0 0.01 -1.35 1.06 144 1440
80 0 0.01 -1.54 21.37 237 1976
100 0 0 -7.35 81.4 489 1688
200 0 0.01 -461.65 2107.72 1285 3428
300 0 0 -2243.49 853.16 1264 2304

0.7 40 0 0 -0.35 0.42 57 439
60 0 0 -0.96 1.95 100 1282
80 0 0 -3.83 19.42 202 1129
100 0 0 -10.92 113.96 476 1332
200 0 0.13 -547.39 1786.61 1483 3667
300 0.01 0.09 -834.5 1164.47 1157 3531

0.8 40 0 0 -0.24 0.25 61 612
60 0 0 -0.98 1.79 68 649
80 0 0.01 -6.87 7.43 312 2012
100 0 0 -16.14 52.61 486 1827
200 0.01 0.35 -112.72 1847.14 1050 2550
300 0 0.05 -1189.3 2137.28 943 2228

Table 4.2: Solution quality and running time for CPLEX solving instances with
pseudo-dominance

4.5. Experiments 41

Size Min. Filtered (%) Avg. Filtered (%) Max. Filtered (%)
40 0.00 2.25 7.50
60 0.00 3.06 8.33
80 0.00 3.00 7.50
100 1.00 3.37 6.00
200 1.50 3.13 5.00
300 1.33 3.23 5.00
400 1.25 3.15 5.25
500 0.80 2.93 5.40
600 2.17 2.88 3.67
700 2.00 2.99 4.43

Table 4.4: Proportion of vertices removed from instances by the filtering step

However, since our work focuses on a heuristic approach and the pseudo-
dominance condition, we propose to remove more vertices by sorting them in de-
creasing order of their dominance set size and by removing the first 10%, 15%, and
20% of the most dominated queries.

vertices
removed Size ∆avg ∆max ∆Tavg (s) ∆Tmax (s) #Nodesavg #Nodesmax

10% 40 0 0 -0.1 0.84 70 510
60 0 0.01 -0.38 3.14 151 2486
80 0 0.01 0.65 22 117 1048
100 0 0.01 0.03 101.14 444 1745
200 0 0.01 160.61 2252 1462 4563
300 0.24 1.83 1493.71 5770.97 1017 2420

15% 40 0 0 0.07 0.76 41 360
60 0 0 -0.51 2.53 182 1347
80 0 0.01 1.67 21.97 65 634
100 0 0 2.89 119.44 430 1200
200 0 0.01 528.63 3786.35 1201 3919
300 0.18 1.14 1409.66 6512.28 1220 1924

20% 40 0.27 2.88 238.87 3586.31 86528 1329708
60 0.06 1.01 0.19 2.38 13 138
80 0.02 0.28 1.51 18.71 198 1202
100 0 0.06 4.22 122.9 562 2021
200 0.02 0.32 516.67 2800.96 1037 3229
300 0.03 0.17 148.61 6510.58 1089 1966

Table 4.5: Solution quality and run time for CPLEX solving Filtered instances

We report in Table 4.5 the number of nodes #Nodes explored by CPLEX, and
the average and maximum deviation, respectively ∆avg and ∆max from the optimal
solution value (computed without filtering). Finally, we report the average and

42 Chapter 4. Results on enumerable space

maximum time gained ∆Tavg and ∆Tmax compared to running CPLEX on unfiltered
instances. Similarly to previous experiments, negative values represent a longer time.
The results in Table 4.5 show that it is beneficial to remove more queries than only
the 3% that would have been removed by using the boundN on optimal solution size.
Removing 10% to 15% of queries yields a significant improvement in the running time
(of more than 20 minutes on larger instances) without deteriorating too much the
solution quality: the deviation is at most 1.83% with respect to optimal solutions.
Although deviations remain very low with 20% of vertices filtered, we gain less time
on larger instances than with 15% filtered. We will therefore use a 15% filtering on
all further experiments.

4.5.3 Initial heuristics

We now evaluate the quality of the initial heuristics h-tsp and h-ks. We compare
their running times along with their deviation to the optimal solutions computed
by CPLEX. We conduct this series of experiments on instances of the family f1
and f2. Those sets of instances respectively constitute Knapsack-like and TSP-like
instances. Thus, we expect h-ks to perform better on f1, and h-tsp to perform better
on f2. Additionally, given the results of the previous experiments, we propose to
test the effect of the filtering approach on the heuristics. We report the average and
maximum deviation, respectively ∆avg and ∆max, from the optimal solution value
along with the average running time for each heuristic in Table 4.6.

As we expected, results presented in Table 4.6 show a clear advantage of h-ks
for the knapsack-like instances (family f1). The average deviation of h-ks remains
mostly under 1%, with its running time well under one second. Meanwhile, h-tsp
produces solutions with a deviation of 5-6% with a slightly higher running time.
When examining the results on instances from family f2, however, we note the
superiority of h-tsp over h-ks is marginal. Yet, results in Table 4.7 show that h-tsp
produces better solutions than h-ks in some cases. However, due to the low cost of
running those heuristics on most instance types, we still believe it is better to run
both and pick the best result.

Now considering the filtering step, we report the result of running both heuristics
on filtered instances in Table 4.8. The filtering seems to marginally degrade the
heuristic solutions in a few scenarios. We also note a reduction in the running time
of h-tsp on family f1 as a side effect of the filtering. However, with the initial
heuristics already very fast with small instances, we propose to reserve it only for
larger instances (>100 queries). In the next experiments, we evaluate the pre-
filtering combined with our matheuristics.

4.5.4 Comparison of the matheuristics with optimal solutions

We now compare the four matheuristics by evaluating their deviation to the opti-
mal solution when they are all given a 10-minute time budget. We conduct this
experiment on both instances of the family f3 and f4 and with and without the

4.5. Experiments 43

Familly Algorithm Size ∆avg ∆max Avg. running time (s)
f1 h-ks 40 0.27 1.87 0.01
f1 h-ks 60 0.00 0.00 0.01
f1 h-ks 80 0.05 0.63 0.01
f1 h-ks 100 0.7 4.81 0.01
f1 h-ks 200 0.28 1.34 0.01
f1 h-ks 300 0.09 0.35 0.01
f1 h-tsp 40 6.9 12.49 0.02
f1 h-tsp 60 4.34 8.44 0.12
f1 h-tsp 80 5.80 9.55 0.54
f1 h-tsp 100 6.03 7.61 1.03
f1 h-tsp 200 5.74 8.32 5.42
f1 h-tsp 300 5.73 8.40 27.03
f2 h-ks 40 0.6 1.82 0.01
f2 h-ks 60 0.29 1.16 0.01
f2 h-ks 80 0.22 0.87 0.01
f2 h-ks 100 0.32 0.69 0.01
f2 h-ks 200 0.11 0.33 0.01
f2 h-ks 300 0.07 0.22 0.01
f2 h-tsp 40 0.32 1.82 0.02
f2 h-tsp 60 0.36 1.11 0.05
f2 h-tsp 80 0.19 0.84 0.12
f2 h-tsp 100 0.26 0.69 0.31
f2 h-tsp 200 0.13 0.33 1.05
f2 h-tsp 300 0.04 0.22 1.31

Table 4.6: Run time and quality of solutions produced by initialization heuristics
on unfiltered instances

Family h-ks h-tsp tie
f1 175 0 5
f2 24 32 124
f3 23 3 154
f4 152 18 10

Table 4.7: Number of instances on which a heuristic performs better than the other,
with the number of ties.

44 Chapter 4. Results on enumerable space

Table 4.8: Running time and quality of solutions produced by initialization heuristics
on filtered instances

Familly Algorithm Size ∆avg ∆max Avg. running time
f1 h-ks 40 0.27 1.87 0.01
f1 h-ks 60 0 0 0.01
f1 h-ks 80 0.05 0.63 0.01
f1 h-ks 100 0.7 4.81 0.01
f1 h-ks 200 0.28 1.34 0.01
f1 h-ks 300 0.09 0.35 0.01
f1 h-tsp 40 5.19 10.39 0.01
f1 h-tsp 60 4.18 8.43 0.02
f1 h-tsp 80 4.29 9.2 0.06
f1 h-tsp 100 5.21 9.89 0.12
f1 h-tsp 200 5.17 7.01 0.80
f1 h-tsp 300 4.49 6.62 3.51
f2 h-ks 40 0.6 1.82 0.01
f2 h-ks 60 0.29 1.16 0.01
f2 h-ks 80 0.3 1.61 0.01
f2 h-ks 100 0.39 2 0.01
f2 h-ks 200 0.22 1.67 0.01
f2 h-ks 300 0.09 0.22 0.01
f2 h-tsp 40 0.27 1.82 0.10
f2 h-tsp 60 0.32 1.11 0.46
f2 h-tsp 80 0.27 1.61 0.76
f2 h-tsp 100 0.37 2 0.64
f2 h-tsp 200 0.21 1.67 0.95
f2 h-tsp 300 0.07 0.22 2.33

4.5. Experiments 45

Algorithm miter titer w k h
vpls-det 5 120 15 7 N.A.

vpls-random 7 90 20 10 N.A.
lb-y 7 90 N.A. N.A. 15
lb-yx 5 120 N.A. N.A. 50

Table 4.9: Best parameters for the four matheuristics given our preliminary experi-
ments

filtering step. For each matheuristic, we run preliminary tests to find an efficient
combination of its parameters, and the obtained results can be found in Table 4.9.
Note that for each instance, the matheuristics are given the best initial solution
from either h-tsp or h-ks.

In Table 4.10, we report the results of matheuristics running on unfiltered in-
stances, the average and maximum deviation, respectively ∆avg and ∆max from the
optimal solution value along with the average running time for each matheuristic.
For uncorrelated instances (f3) the four algorithms provide extremely low deviations
with vpls-det appearing to slightly outperform the others. However, this advantage
does not appear to hold for instances of family f4. With those correlated instances,
it appears that lb-yx performs significantly better with an average deviation under
5% on the 300 node instances. As explained in Section 4.2, we only report in Table
4.11 results using the filtering approach on instances of family f4. With this filtering
step, we observe better results on large instances as matheuristics do not reach their
time limit. The deviations are overall extremely low. As for the fastest algorithm,
vpls-random manages an average of 66 seconds on instances of 300 vertices.

4.5.5 Performance on larger instances

As a final experiment, we propose to evaluate the capabilities of the matheuristics
with the filtering step to solve larger instances of the TAP, where the mathematical
solver runtime exceeds an hour. We compare the performance of the four matheuris-
tics with a 10-minute time limit on the largest instances of family f4. We report δIavg
the deviation to the initial (h-tsp or h-ks) solution for each matheuristic in Table
4.12.

The results in Table 4.12 show that all matheuristics are equally able to improve
the solutions provided by the initialization heuristics. A 2% to 4% improvement is
achieved depending on the size of the instances. The largest instances only improved
by 2%. This shows the ability of the matheuristic to scale beyond the MIP solver
with instances of up to 700 nodes. However, beyond that point, the two initial
heuristics remain the only viable options.

46 Chapter 4. Results on enumerable space

Family Algorithm Size ∆avg ∆max Avg. time (s)
f3 vpls-det 40 0 0 0.97
f3 vpls-det 60 0 0 2.71
f3 vpls-det 80 0 0 8.26
f3 vpls-det 100 0 0 14.65
f3 vpls-det 200 0 0.02 143.54
f3 vpls-det 300 0.19 0.5 514.97
f3 vpls-random 40 0 0 0.92
f3 vpls-random 60 0 0 2.68
f3 vpls-random 80 0 0 8.51
f3 vpls-random 100 0 0 16.91
f3 vpls-random 200 0 0.02 172.30
f3 vpls-random 300 0.25 0.53 451.24
f3 lb-y 40 0 0 1.14
f3 lb-y 60 0 0 3.19
f3 lb-y 80 0 0 9.36
f3 lb-y 100 0 0 18.90
f3 lb-y 200 0.04 0.57 173.03
f3 lb-y 300 0.26 0.53 588.67
f3 lb-yx 40 0 0 1.01
f3 lb-yx 60 0 0 2.84
f3 lb-yx 80 0 0 8.83
f3 lb-yx 100 0 0 17.27
f3 lb-yx 200 0.01 0.22 195.25
f3 lb-yx 300 0.26 0.53 555.34
f4 vpls-det 40 0 0 0.71
f4 vpls-det 60 0 0.01 1.70
f4 vpls-det 80 0 0 2.78
f4 vpls-det 100 0 0.1 10.59
f4 vpls-det 200 0.02 0.05 68.17
f4 vpls-det 300 18.16 99.85 211.16
f4 vpls-random 40 0 0 0.65
f4 vpls-random 60 0 0.01 1.54
f4 vpls-random 80 0 0 3.73
f4 vpls-random 100 0 0.1 12.53
f4 vpls-random 200 0.01 0.08 85.17
f4 vpls-random 300 9.16 99.8 217.31
f4 lb-y 40 0 0 1.04
f4 lb-y 60 0 0.01 2.69
f4 lb-y 80 0 0 6.23
f4 lb-y 100 0 0 21.69
f4 lb-y 200 0.45 12.86 210.37
f4 lb-y 300 6.18 34.96 323.70
f4 lb-yx 40 0 0 0.89
f4 lb-yx 60 0 0.01 2.25
f4 lb-yx 80 0 0 5.14
f4 lb-yx 100 0 0 19.70
f4 lb-yx 200 0.23 6.69 198.66
f4 lb-yx 300 4.81 26.86 227.97

Table 4.10: Solution quality and running time of matheuristics on instances of
families f3 and f4 (without filtering)

4.6. Conclusion 47

Algorithm #vertices ∆avg ∆max Avg. time (s)
vpls-det 40 0 0 0.57
vpls-det 60 0 0.01 1.30
vpls-det 80 0 0.01 3.12
vpls-det 100 0 0.05 9.07
vpls-det 200 0.02 0.07 49.87
vpls-det 300 0.01 0.04 103.94

vpls-random 40 0 0 0.56
vpls-random 60 0 0.01 1.28
vpls-random 80 0 0.01 3.20
vpls-random 100 0 0 10.84
vpls-random 200 0 0.04 94.95
vpls-random 300 0.01 0.04 66.75

lb-y 40 0 0 0.82
lb-y 60 0 0.01 2.13
lb-y 80 0 0.01 5.43
lb-y 100 0 0 19.17
lb-y 200 0 0.03 213.71
lb-y 300 0.01 0.04 274.33
lb-yx 40 0 0 0.68
lb-yx 60 0 0.01 1.80
lb-yx 80 0 0.01 5.21
lb-yx 100 0 0 16.81
lb-yx 200 0 0.01 147.67
lb-yx 300 0 0.04 204.48

Table 4.11: Solution quality and running time of matheuristics on filtered instances
of family f4

4.6 Conclusion

In this chapter, we studied the solutions to the Traveling Analyst Problem (TAP)
using: a MIP solver, simple and effective heuristics based on Knapsack and TSP
heuristics, and finally, matheuristics based on the VPLS and Local Branching meth-
ods. We investigated possible techniques to accelerate solution of the MIP further
using filtering and additional constraints based on pseudo-dominance. Both heuris-
tics and matheuristic showed capabilities to produce high-quality solutions in less
than 10 minutes. In this chapter, we have shown that these various tools are adapted
to a wide variety of TAP instances and contexts. In the last two chapters of this
thesis, we will demonstrate their use in appropriate scenarios. In Chapter 5, we
show the MIP used in small instances and the heuristics in instances up to millions
of nodes. Finally, in Chapter 6, we present a novel method that uses the potential
of matheuristics for fast, high-quality solutions.

48 Chapter 4. Results on enumerable space

#vertices Algorithm δIavg
400 vpls-det 4.04
400 vpls-random 4.05
400 lb-y 4.05
400 lb-yx 4.01
500 vpls-det 3.28
500 vpls-random 3.28
500 lb-y 3.28
500 lb-yx 3.28
600 vpls-det 2.88
600 vpls-random 2.88
600 lb-y 2.88
600 lb-yx 2.88
700 vpls-det 2.57
700 vpls-random 2.57
700 lb-y 2.57
700 lb-yx 2.57

Table 4.12: Relative deviation over initial solutions for instances of family f4

Chapter 5

Applications

Contents
5.1 Introduction . 49

5.2 Generation of sequences of comparison queries 51

5.3 Comparison queries, hypothesis queries, and insights 51

5.3.1 Comparison queries . 52

5.3.2 Insights and hypothesis queries 52

5.3.3 Insights and statistical errors 55

5.4 Comparison notebooks generation 55

5.4.1 Interestingness, cost, and distance 56

5.4.2 Generating the set of comparison queries 57

5.5 Optimizing comparison notebook generation 58

5.5.1 Optimizing statistical tests 58

5.5.2 Reducing the number of queries 59

5.6 Experimental results . 61

5.6.1 Experimental setup . 61

5.6.2 Exact resolution of the TAP 62

5.6.3 Scalability . 63

5.6.4 Quality of approximate solutions 66

5.6.5 Human evaluation . 67

5.7 Conclusion . 69

5.1 Introduction

In this section, we highlight three applications of the TAP problem and the
methods used to solve them. Two applications are related to the EDA field
([Chanson et al. 2022a, Chanson et al. 2022b]) while the third one concerns person-
alized lifelong pathways ([Chanson et al. 2021]). We briefly discuss the scope and
contributions of [Chanson et al. 2021] and [Chanson et al. 2022b] and dedicate the
rest of this chapter to a major contribution of this thesis ([Chanson et al. 2022a]).

50 Chapter 5. Applications

Generating personalized EDA notebooks Our first contribution to the
EDA field ([Chanson et al. 2022b]) proposes a way to use existing EDA notebooks
produced by the user community on platforms such as Kaggle and creating
personalized EDA exploration by re-using their base components (code or text
cells). We compute interestingness of a cell is determined by its similarity to the
user’s profile. In practice, given the nature of the notebook as a tool for sharing
code, we noticed the user’s intent was often clearly explained in the form of
comments. Thus we used the TF-IDF1 method for these textual elements, creating
vectors for the profile and cells. The interestingness of a cell is then computed
by a cosine similarity between its vector and the user profile vector. The same
vectors are used to compute the distance between cells using the cosine distance
function ([Singhal & Google 2001]). Finally, the time is set to a constant to control
the length of the notebooks generated. We conducted a series of preliminary
experiments to construct notebooks from ten thousand cells about a heart disease
dataset2. The use of machine learning to learn interest and distance meant the
construction of the instance was orders of magnitude longer than solving it heuristi-
cally. Although the produced3 notebooks seem somewhat coherent, we noted several
issues: notably, some cells may require variables or libraries that have not been
initialized in the crowdsourced notebook. This could be solved by analyzing the
source and prepending the necessary code to the cells in the crowdsourced notebook.

Lifelong pathways for RSA benificiaries Our second application of TAP does
not concern EDA sessions. In [Chanson et al. 2021], we aim to construct lifelong
pathways. These pathways are sequences of actions pertaining to health, social, or
professional aspects for fulfilling a lifelong personal project. This work focuses on the
pathways undertaken by French RSA4 beneficiaries to get a job. The nature of this
project required that the interestingness measure be personalized to the beneficiary
profile. We used machine learning to identify the relevance of each action to a
beneficiary expressed as the probability a beneficiary with a similar profile would
have undertaken this action. In this work, we explored the option of a learned
distance function. We used the method described in [Xing et al. 2002] to learn a
generalized Mahalanobis distance based on existing pairs of actions in completed
pathways. As for time, we used the real-world time (in days) required for an action
(e.g., "Get a driver’s license" 30 days). This was extracted from data of previous
beneficiaries having completed their pathway to employment. In this work, we were
able to directly solve the MIP (see Section 4.2) as the number of actions was limited.

1TF-IDF (Term Frequency - Inverse Document Frequency) as an early statistical language
model ([Salton & Buckley 1988]) that detects frequent words across documents and establishes
their relative importance in every document. It outputs vectors that can then be used to compare
documents based on the prevalence of frequent words in them.

2https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
3Samples available here: https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing/

tree/master/output/notebooks
4https://en.wikipedia.org/wiki/Revenu_de_solidaritÃľ_active

https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing/tree/master/output/notebooks
https://github.com/Blobfish-LIFAT/NotebookCrowdsourcing/tree/master/output/notebooks
https://en.wikipedia.org/wiki/Revenu_de_solidarité_active

5.2. Generation of sequences of comparison queries 51

We used previously gathered data on finished pathways to compare our algorithm
to human performance. We could reconstruct similar pathways in most cases (0.9
of F1 measure) in less than 5 minutes. In this context, using a MIP has a major
advantage. It permits the user to add domain-specific constraints at will, such as
precedence constraints between actions.

5.2 Generation of sequences of comparison queries

We dedicate the rest of this chapter to introducing a major contribution of this thesis.
In this work, we contribute to the field of automatic generation of data exploration
sessions ([Tang et al. 2017, El et al. 2020]). Specifically, we study the problem of
generating meaningful sequences of comparison insights over a potentially unknown
dataset, which could serve as an entry point in the exploration of this dataset.

We work with the following hypotheses. First, we assume that the dataset
consists of one table, imported into a Relational DataBase Management System
(RDBMS), for which the user only has to distinguish between numeric attributes
and categorical attributes before starting to query it with SQL.

This works focuses on comparison queries, we refer the reader to Section 3.4 for
a formal definition. We assume that the user is interested in a sequence of com-
parison queries, that we call a comparison notebook in this chapter. This sequence
of maximum interestingness, minimum overall distance, and minimum execution
time will be constructed by solving the TAP. Consistently with prior approaches
([Zgraggen et al. 2018, Tang et al. 2017]), we consider that insights should be vali-
dated using appropriate statistical tests. Therefore we integrate statistical testing
and filtering of non-significant insights in our work.

An overview of our approach is presented in Figure 5.1. When the dataset is
loaded in the RDBMS, a series of statistical tests are performed to select the sig-
nificant insights. These are then turned into hypothesis queries, i.e., queries that
the user would have to write to check whether an aggregate query over the dataset
is evidence of insights. Then, only those aggregate queries that are evidence of
insights, that we call comparison queries are retained. Finally, a notebook of com-
parison queries is generated by picking a given number of comparison queries that
maximize an interestingness criterion and are arranged in a sequence that minimizes
the distance between them.

This chapter is organized as follows. Section 5.3 introduces hypothesis queries
and insights. Section 5.4 formalizes the problem while Section 5.5 presents our
solution schemes. Section 5.6 presents the tests we have done. Finally, Section 5.7
concludes and draws some research perspectives.

5.3 Comparison queries, hypothesis queries, and insights

This section presents our logical framework. Section 5.3.1 defines comparison queries
and notebooks, and Section 5.3.2 defines insights and hypothesis queries. Finally,

52 Chapter 5. Applications

Figure 5.1: Overview of the approach

Section 5.3.3 introduces insight credibility and a transitivity relation over insights.

5.3.1 Comparison queries

This work introduced and used the comparison query; we refer the reader to Section
3.4 for a definition and properties of comparison queries. Note that in this chapter,
we assume there is no functional dependency between categorical attributes.5 In
what follows, a comparison query is described by the 6-tuple (A,B, val, val′,M, agg).
Finally, we call comparison notebook, or notebook for short, a finite sequence of
comparison queries. In this context, this notebook is simply a TAP solution.

5.3.2 Insights and hypothesis queries

Consistently with previous characterizations of insights in EDA [Tang et al. 2017,
Zgraggen et al. 2018], we see insights over a dataset as declarations such as “On
average there were more COVID cases in May compared to April” based on a visual
display that triggers the insight, i.e., on the result of a user comparison query over the
dataset (e.g., number of cases grouped by continents, in April and May). To check
the significance of an insight i, i is turned into a testable statistical hypothesis, and
the significance of i corresponds to the p-value of the statistical test. For instance,
the insight “On average there were more COVID cases in May compared to April”
is turned into the null hypothesis (i.e., assuming the absence of effect) E[X] = E[Y]

where X and Y are the random variables representing the number of cases for April
and May, respectively.

In the case of comparisons, we give a specific definition of insights as declarations
concerning two particular values of a given categorical attribute.

5In practice, as we will explain later, we use functional dependency detection in a pre-processing
step to exclude meaningless queries, like selecting two days and grouping over months.

5.3. Comparison queries, hypothesis queries, and insights 53

Definition 7 (Insight type, insight). An insight type is a name giving the semantics
of an insight. Given a measure M , a categorical attribute B of a relation R, and two
constants val, val′ ∈ Dom(B), an insight over R is a tuple i = (M,B, val, val′, p)

where p is a selection predicate depending on the insight type.

In what follows, we consider two types of insights: mean greater (M) and variance
greater (V). The predicates associated with each type of insight are, respectively,
avg(val) > avg(val′) (M) and variance(val) > variance(val′) (V).

Lemma 3 (Number of insights). Let T be the number of insight types. The number
of insights over R of schema R[A1, . . . , An, M1, . . . , Mm] is

n∑
i=1

(
|dom(Ai)|

2

)
×m× T

An insight induces an hypothesis over relation R.

Definition 8 (Hypothesis postulating an insight). Let R be a relation and i =

(M,B, val, val′, p) be an insight over R. The hypothesis postulating i depends on
the insight type: E[X] > E[Y] (M) or var(X) > var(Y) (V) where X and Y are
the random variables over R representing measure M for predicates B = val and
B = val′, respectively.

The queries that express a comparison together with a given hypothesis are
called hypothesis queries. An example of such query is given in Figure 5.2.

Definition 9 (Hypothesis query). Given a comparison query q =

(A,B, val, val′,M, agg) and an insight i = (M,B, val, val′, p) of type τ , an
hypothesis query is an extended relational query of the form:

πτ→hypothesis(σp(q))

To be considered a true discovery, an insight has to be both (i) supported by the
result of comparison queries and (ii) significant. For condition (i), the result of a
comparison query is susceptible to trigger an insight only if it supports an hypothesis
that can be tested.

Definition 10 (Query supporting an insight). Given an hypothesis query h =

πτ→hypothesis(σp(q)) for insight i = (M,B, val, val′, p) of type τ , h supports i, de-
noted h ⊢ i, if h evaluates to true; consequently, q supports i for h, denoted q ⊢h i,
if σp(q) is true. If σp(q) is false, we say that h (resp., q) does not support i.

Note that a given comparison query q can support many insights. The set
of insights supported by comparison query q is noted Iq in what follows. In what
follows, we consider that the more insights supported by a query, the more interesting
the query. Also, note that an insight can be supported by many comparison queries.
If we consider the set of insights of any type over R, for measure M , attribute B and
values val, val′, the set of comparison queries of the form (A,B, val, val′,M, agg)

54 Chapter 5. Applications

Table 5.1: Statistical tests by insight type
Insight type Null hypothesis Test statistics

M E[X] = E[Y] |µX − µY |
V var(X) = var(Y) |σ2X − σ2Y |

with comparison as
(select t1.continent, April , May
from
(select month, continent, sum(cases) as April
from covid where month = ’4’
group by month, continent) t1,

(select month, continent, sum(cases) as May
from covid where month = ’5’
group by month, continent) t2

where t1.continent = t2.continent
order by t1.continent)

select ’mean greater’ as hypothesis from comparison
having avg(April)<avg(May);

Figure 5.2: A hypothesis query postulating insight avg(April) < avg(May).

supporting such insights only differ in the grouping attribute A. In what follows,
we consider that only the most interesting query from this set should be kept, since
all the other queries are evidence of the same insights.

As to condition (ii), the hypothesis postulating an insight corresponds to the
alternative hypothesis of a statistical test for which the p-value indicates the signif-
icance of the insight. The considered test and the null hypothesis depend on the
insight type (see Table 5.1).

Definition 11 (Insight significance). Let πτ→hypothesis(σp(q)) be an hypothesis query
for insight i = (M,B, val, val′, p) of type τ . The significance of i is sig(i) = 1 −
P (T > o|H0), where o is the observed statistics over R, H0 is the null hypothesis,
and T is the random variable associated to the test results over R.

Example 4.
An example of hypothesis query for the comparison query of Figure 3.2 is given
in Figure 5.2. It postulates that the average number of cases for the month of
April is less than the average number of cases for the month of May, i.e., in-
sight i = (cases,month,April,May, avg(April) < avg(May)). The result of the
comparison query of Figure 3.2 supports this, since it is observed at the conti-
nent level, avg(May) − avg(April) = 61346.4. To check the significance of the
insight avg(April) < avg(May), it is turned into the null hypothesis E[X] =

E[Y] where X and Y are the random variables representing cases for May and
April, respectively. The test statistics |µX − µY | is applied over R, showing that
avg(May)−avg(April) = 55.79. The p-value gives the significance of the insight as

5.4. Comparison notebooks generation 55

the probability of observing the test statistics value over R as extreme as the observa-
tion o. If the p-value is low enough, this means that the insight is both significant and
supported by the comparison query, making this comparison query a good candidate
for being presented to the user.

5.3.3 Insights and statistical errors

In statistical hypothesis testing, a type I error is the rejection of a true null hypoth-
esis, while a type II error is the non-rejection of a false null hypothesis. Consistently
with [Zgraggen et al. 2018], we associate false discoveries with type I error, a false
discovery being in our case a query q supporting an insight i while the insight is
not significant, i.e., sig(i) < 0.95 and q ⊢ i. On the other hand, a false omission
means ignoring a real pattern because it looks uninteresting, and corresponds to a
type II error. In our case, such a pattern corresponds to a query q not supporting
an insight i while the insight is significant., i.e., sig(i) > 0.95 and q ̸⊢ i.

To quantify the evidence of an insight i, we define its credibility as the number
of queries that support it.

Definition 12 (Credibility of an insight). Let i be an insight and Qi be the set of
hypothesis queries postulating i. The credibility of i is

credibility(i) = |{h ∈ Qi|h ⊢ i}|

For an insight i over schema R[A1, . . . , An,M1, . . . ,Mm], it is |Qi|= (n− 1).
The probability of making a type I error is a conditional probability, namely

credibility(i)
|Qi| knowing that sig(i) < 0.95, while the probability of making a type II

error is
(
1− credibility(i)

|Qi|

)
knowing that sig(i) ≥ 0.95. In what follows, we are

interested only in significant insights, i.e., only those for which sig(i) ≥ 0.95 is true.
Note that an insight, even if significant, may have no supportive hypothesis

query, by construction of hypothesis queries. We choose not to consider this kind of
insights, since no comparison seen by a user would trigger it.

For insight types like mean and variance, a transitivity relation allows pruning
insights that can be deduced. If the mean of X is smaller than the mean of Y and
the mean of Y is smaller than that of Z, then the mean of X is smaller than that
of Z. In other words, the fact that the mean of X is smaller than that of Z is an
insight that can be deduced from the other two, and can be pruned out from the
set of insights. The same holds for variance.

5.4 Comparison notebooks generation

We now define the problem of generating sequences of comparison insights. Con-
sistently with EDA (e.g., [El et al. 2020]), our objective is to generate compelling
exploratory sessions, specifically coherent sequences of comparison queries showing
significant insights. We model this problem as an ε−constrained TAP and discuss

56 Chapter 5. Applications

the interestingness, cost, and distance used in this application in this section. Fi-
nally, we discuss the construction of the set of comparison queries that constitute
the TAP instance.

5.4.1 Interestingness, cost, and distance

Interestingness Following [Tang et al. 2017, Zgraggen et al. 2018,
Marcel et al. 2019, El et al. 2020], our definition of comparison query inter-
estingness is manifold: (i) the more insights supported, the better; (ii) the more
significant the insights, the better; (iii) the more surprising the insights, the better;
(iv) the more concise the comparison query, the better.

For (i), we just sum over the number of insights that a comparison query can
support. For insight i, sig(i) is used for (ii). As to (iii), we use the probability of
the insight being a type II error. Finally, for (iv), we use a conciseness measure in
the spirit of that introduced in [El et al. 2020].

Definition 13 (Interestingness of a query). Let q be a comparison query and Iq be
the set of insights supported by q. The interestingness of query q is interest(q) =

conciseness(θq, γq)×
∑
i∈Iq

(ω × sig(i)× (1− credibility(i)

|Qi|
))

where
conciseness(θq, γq) = e

− 1

θδq
(γq−θqα)2

and ω is a weigh ruling the importance of sig(i).

Conciseness uses a non-monotonic function of two variables: (i) θq, the number
of tuples aggregated by query q, and (ii) γq, the number of groups in the result of q.
Two values α and δ are used to control the tuple-to-group ratio. Parameter α sets
the growth rate of the ideal number of groups given the number of tuples, behaving
like the slope in a linear function. Parameter δ enables us to “spread” the ideal ratio.
A geometric intuition of the function behavior is given in Figure 5.3 (the undefined
zone corresponds to the number of groups being greater than the number of tuples,
which does not make sense in our context).

Distance The distance we need must satisfy the triangle inequality since other-
wise, given the problem formulation, the risk is to trade interestingness for distance.
In other words, we could end up with sub-sequences where it is better to pass
through a low-cost non-interesting query to reach an interesting one, while this
would be impossible with a proper metric.

To keep the computation of this metric under control, we choose to use a weighted
Hamming distance over the query parts. We recall that a comparison query q is
represented as a vector of query parts q = (A,B, val, val′,M, agg) that can be
extracted from the text of the query. Following [Aligon et al. 2014], the weights
represent the importance of the query parts in the transition from one comparison

5.4. Comparison notebooks generation 57

Figure 5.3: Illustration of the conciseness function

query to another, precisely: val, val′ the highest, followed by B, then A, and finally
M and agg have the lowest impact.

Cost The cost of a query should straightforwardly be its evaluation time. However,
given the form of comparison queries, and assuming that no physical optimizations
have been made, the cost of all comparison queries will roughly be the same. We ran
a test with a sample of comparison queries over the ENEDIS dataset used in Section
5.6 which confirms this intuition (see Figure 5.4). In this case, only interestingness
and distance have an impact on the computation of an optimal solution to the
problem. In other words, we can set the cost of each query to the same value, and
use the time budget for controlling the number of queries in the solution.

5.4.2 Generating the set of comparison queries

The generation of the set Q of comparison queries over a dataset R is performed
by Algorithm 6. The algorithm loops over all potential insights over R (lines 2-8),
checking for each one its significance with the appropriate statistical test (line 3).
If the insight is found to be significant (line 4), a comparison query is generated for
it, by first generating an hypothesis query for each possible grouping attribute and
aggregation function (line 5), and next checking if this hypothesis query supports
the insight (line 8). Finally, for the sets of comparison queries that evidence the

58 Chapter 5. Applications

Figure 5.4: Distribution of comparison queries run times

same insights (line 15), only the ones maximizing interestingness are kept (line 16).
Algorithm 6 consists of a naive and inefficient approach for generating compari-

son queries. Computationally-wise, the costly steps are the statistical tests (line 3)
and the evaluation of the hypothesis queries (line 8). We address these issues in the
next section.

5.5 Optimizing comparison notebook generation

Generating comparison queries with Algorithm 6 and computing an exact solution
of the TAP provides a basic approach to generate notebooks of comparison queries
over small datasets. To scale to real-world datasets with a very large number of
insights and comparison queries, we implemented three types of optimizations: (i)
optimize statistical tests, (ii) minimize the number of queries to send to the DBMS,
and (iii) use a heuristic to approximate the TAP.

5.5.1 Optimizing statistical tests

5.5.1.1 Using permutation testing

For hypothesis testing we use resampling, due to its advantages over parametric test-
ing [Zgraggen et al. 2018]: it does not assume the distributions of the test statistics,
nor does it impose samples to be large enough. We use the same permutations to
check all possible insights on different measures for a given attribute. Since many
statistical tests are performed we are likely to encounter spurious insights due to the
multiple comparison problem [Zgraggen et al. 2018]. This issue is however well stud-
ied by statisticians ([Benjamini 2010]), and we can use a p-value correction method
to ensure the false discovery likelihood remains consistent with the usual 5%. We use
the [Benjamini & Hochberg 1995] false discovery rate correction method to correct
p-values, setting the false discovery rate at 5%.

5.5. Optimizing comparison notebook generation 59

Algorithm 6 Comparison query generation
Require: a relation R
Ensure: a set of comparison queries over R
1: Q← ∅
2: for each insight i = (M,B, val, val′, p) of type τ over R do
3: compute sig(i) ▷ perform statistical test
4: if sig(i) > 0.95 then ▷ i is significant
5: for each A ̸= B of R and function agg do
6: q ← (A,B, val, val′,M, agg)

7: h← πτ→hypothesis(σp(q))

8: if h ⊢ i then ▷ h supports i
9: Q← Q ∪ {q}

10: end if
11: end for
12: end if
13: end for
14: for each q = (A,B, val, val′,M, agg) ∈ Q do
15: QA ← {q′ ∈ Q|(C,B, val, val′,M, agg) with C ̸= A}
16: Q← Q \QA ∪ {argmaxq′∈QAinterest(q′)}
17: end for
18: return Q

5.5.1.2 Using sampling

We use two different offline sampling strategies to speed up the statistical tests.
The first one, unbalanced-sampling, samples each of the n categorical attributes
independently. It seeks to balance the number of tuples per attribute value, avoiding
that very selective values be under-represented. The second one, random-sampling,
randomly samples the dataset in a uniform way.

5.5.2 Reducing the number of queries

Algorithm 6 (i) requires, for doing statistical tests, to evaluate n queries of the form
πA,M (R), where A is a categorical attribute in {A1, . . . , An} and M is a measure
attribute in {M1, . . . ,Mm}. For generating comparison queries, Algorithm 6 (ii)
requires evaluating all hypothesis queries for significant insights, i.e., in the worst
case all hypothesis queries.

Our aim is to reduce the number of queries to send to the DBMS by finding a
set of queries retrieving all necessary data for the statistical tests and the generation
of comparison queries. We first remark that we should separate the computation of
statistical tests from the evaluation of hypothesis queries because doing both at the
same time would require evaluating n(n−1)/2 queries of the form πA,B,M1,...,Mm(R)

over the full dataset which, for large instances, is almost as large as the instance
itself.

60 Chapter 5. Applications

Table 5.2: Description of the datasets
Name Size Size #Categ. Adom size #Meas. #Comp.

(tuples) (Bytes) attr. (min-max) queries
Vaccine 5045 656K 6 2-107 1 700
ENEDIS 114,527 21M 7 3-1295 2 1,571,832
Flights 5,819,079 808M 5 7-377 3 350,460

5.5.2.1 Bounding the number of queries

To reduce the number of queries for doing the statistical tests, we send n queries
of the form πA,M1,...,Mm(R) to the DBMS. To reduce the number of hypoth-
esis queries to evaluate, we remark that we only need all the group-by sets
of two categorical attributes (named 2-group-by sets from now on) taken in a
given order. This corresponds to n(n − 1)/2 queries (see Lemma 1) of the form
γA,B,agg1(M1),agg1(M2),...,aggf (Mm)(R) where A,B are two different categorical at-
tributes from the schema R[A1, . . . , An,M1, . . . ,Mm], and the aggi are all the ag-
gregate functions. This also provides an upper bound to the number of queries to
launch to retrieve the data necessary to evaluate the set of hypothesis queries.

5.5.2.2 Merging group-by queries

To further reduce the number of hypothesis queries, we use a group-by aggregate
merging strategy similar to the one used in [Ma et al. 2021] and presented in Algo-
rithm 7. Specifically, we look for the largest group-by sets fitting in memory from
which many hypothesis queries can be evaluated, and evaluate them for free once the
data they need is in memory. The problem of finding the best set of group-by sets is
an instance of the classical weighted set cover problem. Let R be a relation over the
set A = {A1, . . . , An} of n categorical attributes. Let G be the set of all group-by
sets from R except the 1-group-by sets, i.e., G = 2A \ {A1} \ . . . \ {An} (Algorithm
7, line 2). Assume that we have a weight for each elements of G corresponding to
their estimated memory footprint, as obtained from the query optimizer (Algorithm
7, line 6). The goal is to find the sub-collection of G having the minimal overall
weight that covers the set U of 2-group-by sets. This problem being NP-hard, we
use a greedy heuristic to approximate the solution to the weighted set cover prob-
lem (line 8), whose complexity is O(|U |×log|G|) [Young 2016]. In case the smallest
subset of aggregates does not fit in memory, we implement a fallback strategy that
successively loads the smallest possible aggregates (i.e., the group by sets of U) in
memory.

5.6. Experimental results 61

Algorithm 7 Finding the best set of group-by sets
Require: a relation R with n categorical attributes A = {A1, . . . , An}
Ensure: a set of group-by sets over R with minimal memory footprint covering all

pairs of categorical attributes
1: G← 2A

2: G← G \ {g ∈ G||g|= 1}
3: U ← {g ∈ G||g|= 2}
4: for each group-by set g of G do
5: q ← γg(R)

6: Estimate the size of q
7: end for
8: G← Solve the weighted set cover problem for G,U
9: return G

Table 5.3: Implementations
Name Generation of Q Solving TAP
Naive-exact Algo. 6 + bounding MIP
Naive-approx Algo. 6 + bounding h-KS
WSC-approx Algo. 7 h-KS
WSC-unb-approx Algo. 7 + unbalanced-sampling h-KS
WSC-rand-approx Algo. 7 + random-sampling h-KS

5.6 Experimental results

5.6.1 Experimental setup

The real datasets for our tests are described in Table 5.2. The tiny Vaccine dataset6

consists of country-level COVID-19 vaccination data as of June 2021. The ENEDIS
dataset7 is about electric consumption in France by location, year, consumption
category, and commercial sector. The Flights dataset8 consists of one year of flight
arrival and departure details for all commercial flights within the USA.

The implementations used in the tests are described in Table 5.3, where we
detail the algorithm for generating the set of comparison queries and the algorithm
for solving the TAP, using naive implementations and the optimizations presented
in Section 5.5. Naive-exact uses the naive Algorithm 6 and the optimization of
Section 5.5.2.1 for generating the set of comparison queries, and then we solve the
MIP of the TAP (see Section 4.2). In Naive-approx, approximating TAP is done
with our heuristic h-KS. This heuristic is also used for implementations of WSC-
approx, WSC-unb-approx, and WSC-rand-approx, which use Algorithm 7 of Section
5.5.2.2 to reduce the number of queries and differ in how statistical tests are done: no
sampling for WSC-approx, unbalanced sampling for WSC-unb-approx, and random-

6https://www.kaggle.com/gpreda/covid-world-vaccination-progress
7https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-iris/

export/
8https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009

https://www.kaggle.com/gpreda/covid-world-vaccination-progress
https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-iris/export/
https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-iris/export/
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009

62 Chapter 5. Applications

Table 5.4: Time to solve the TAP to optimality
#Queries Time (s) %Timeouts

avg min max stdev
100 1.61 0.65 8.14 1.62 0
200 28.47 3.12 126.92 31.52 0
300 239.83 12.28 963.55 240.12 0
400 727.90 24.47 1667.2 414.51 0
500 1869.75 166.15 > 3600 830.74 23.3
600 1343.89 240.06 > 3600 1000.37 86.7
700 - > 3600 > 3600 - 100

sampling for WSC-rand-approx. In all our tests, the parameters of the conciseness
function (see Section 5.4) are set to values empirically tuned to a good trade-off
between the number of groups and the number of tuples aggregated, and εd is set
to a value empirically tuned to obtain TAP solutions where queries are very close
to each other.

Our prototype is written in Java and is publicly available9. It runs on top of
PostgreSQL version 13.4. We implemented a pre-processing step to detect functional
dependencies among categorical attributes to prevent meaningless queries from being
generated. All tests were run on a Fedora Linux (kernel 5.11.13-200) workstation,
on a 2.3 GHz Intel Xeon 5118 12-core, 24 logical processors and 377GB 2666 MHz
of DDR4 main memory.

5.6.2 Exact resolution of the TAP

This first test aims to answer the following questions: how many queries can be
reasonably handled when computing the exact solution to the TAP? For this test, we
generated artificial sets of queries of different sizes, from 100 to 700 queries (reaching
the size of the set of comparison queries of our smallest dataset, Vaccine), varying
the number of comparison queries while keeping similar uniform distributions of
interestingness, cost, and distances. We ran vanilla CPLEX with default settings
(notably single-threaded), with a timeout set to one hour, on 30 instances of equal
size, for a given number of queries (εt = 25) in the solution. We report the average
time by size in Table 5.4.

Timeouts are reached from 500 queries onward; when reaching the size of our
smallest dataset (700 queries) the solver always took more than one hour, preventing
the calculation of average and standard deviation. This instance size is then ignored
in subsequent tests. The fact that the average time is lower for 600 queries (compared
to 500) is explained by the high number of timeouts for this instance size, which
are ignored in the computation of the average. This shows that, expectedly, the
TAP cannot be solved exactly for large datasets, so heuristics will be used in the
following.

9https://github.com/patrickmarcel/sqlEDAqueryGenerator

https://github.com/patrickmarcel/sqlEDAqueryGenerator

5.6. Experimental results 63

5.6.3 Scalability

Since, as shown above, exact solution is only doable for small datasets, this next test
aims at answering the question: how well does the implementation of a reasonable
heuristic solution to the problem scale? To answer this question, we ran many tests
to check the different optimizations presented in the previous section.

For each implementation, we show the time to compute a notebook, broken
down into generation and solution time, varying the dataset size and the number
of queries expected in the solution, i.e., εt (see Section 5.4), called budget in what
follows.

We start by adjusting the sample size for the two implementations that use
sampling: WSC-unb-approx and WSC-rand-approx.

5.6.3.1 Adjusting sample size

Figure 5.5: Adjusting sample size for WSC-unb-approx (top) and WSC-rand-approx
(bottom)

This test aims at finding what sample size to use on large datasets, to achieve
a good compromise between runtime and percentage of insights detected. We ran
WSC-unb-approx and WSC-rand-approx on the Enedis dataset, varying the sample
size and reporting the runtime and the fraction of insights found. As shown in

64 Chapter 5. Applications

Figure 5.5, 20% seems a good compromise for WSC-unb-approx while WSC-rand-
approx needs larger samples, around 40%, to achieve a similar ratio of insights that
can be detected. This is mainly due to the ability of unbalanced sampling to better
preserve the initial dataset diversity, particularly minority trends, which in turn
helps preserve more insights at lower sampling rates.

5.6.3.2 Runtime breakdown

For this test, we ran the 5 implementations on the Enedis dataset.

Figure 5.6: Runtimes breakdown on the ENEDIS dataset

The result is shown in Figure 5.6, the average runtime breakdown by implemen-
tation.

As expected, the implementations using sampling strategies outperform the oth-
ers, i.e., naive-exact, naive-approx, and WSC-approx, which are all between 300
and 400 seconds. The sample sizes were adjusted based on the observations reported
above, and therefore WSC-rand-approx runs on a larger sample, which explains why
WSC-unb-approx, while using a more sophisticated sampling strategy, runs faster.
However, even with this larger sample, only 85% of insights can be tested on average
by WSC-rand-approx, compared to 95% for WSC-unb-approx. As to the breakdown
for the different steps of the implementations, we observe that performing the sta-
tistical tests is the most costly step, with sampling drastically reducing it. We note
that solving TAP heuristically is negligible when compared to the instance construc-
tion. Finally, we see that Algorithm 7 has only little impact on the hypothesis query
evaluation, which can be explained by the small number of categorical attributes in
the dataset.

5.6.3.3 Multi-threading

Several steps of the generation of Q can be parallelized, notably (i) permutation
testing over different groups of categorical attributes and (ii) the use of in-memory
partial aggregates to check which comparison queries support the insights. We run

5.6. Experimental results 65

Figure 5.7: Impact of multi-threading on the generation of Q

WSC-approx on the ENEDIS dataset, with 1 to 48 threads, and report the runtime
for steps (i) and (ii) in Figure 5.7. The speedup from single threaded to only 8
threads is very large, and remains substantial when going from 8 to 16 threads.
However, further increasing the number of threads yields diminishing returns. The
main reason for this is related to the architecture of the processor used for our tests,
which produces overhead when increasing the number of threads over 24. In our
tests, we therefore set the number of threads to 16.

5.6.3.4 Runtime of sampling strategies on larger datasets

Running WSC-approx on the Flights dataset took more than 14 hours. To be
able to generate comparison notebooks more efficiently for this dataset, we run
WSC-unb-approx and WSC-rand-approx on Flights, testing different sample sizes
in {5%, 10%, 20%, 30%}. The results are shown in Figure 5.8.

It can be seen that WSC-unb-approx outperforms WSC-rand-approx, as already
observed on the ENEDIS dataset. Analyzing the runtime breakdown, we see that
the last two steps remain insensitive to the sample size, around 20 seconds for
Hypothesis query evaluation and around 300 milliseconds for TAP solving. Note
that the percentage of detected insights , for both implementations, is greater than
100. This is due to the extreme reduction in the dataset size using aggressive
sampling factors during statistical tests: some detected insights are spurious, and
the quantity of spurious insights decreases as the sampling factor increases. We
observe that WSC-unb-approx uses a sampling strategy that is more robust to the
spurious insights than that of WSC-rand-approx. Tuning the credibility component
of our interestingness function (see Section 5.4.1), being computed on the complete
dataset, could be used to control the weight given to these spurious insights.

66 Chapter 5. Applications

Figure 5.8: Runtime and % of insights on the Flights dataset

Table 5.5: Average deviation to optimal solution objective
#Queries Deviation (± std.)

100 1.14 ±1.52 %
200 0.17 ±0.12 %
300 0.10 ±0.09 %
400 0.06 ±0.06 %
500 0.06 ±0.05 %
600 0.03 ±0.04 %

5.6.4 Quality of approximate solutions

This test aims at answering the question: how degraded are the approximate solu-
tions of the TAP compared to the optimal ones? For this test, we used h-KS to find
approximate solutions of the TAP.

Our first experiment uses the same artificial datasets as the ones used in Section
5.6.2, with the same protocol (averaging the results over 30 runs on instances of
equal size, fixing the size of the solutions εt). As a measure of the quality of the
solution, we compute z, i.e., the sum of interestingness of the queries in the solutions.
We show in Table 5.5 ((cplex.z−h-KS.z)/cplex.z)×100, i.e., the deviation between
cplex.z, the quality of solutions found by CPLEX when solving the MIP, and h-KS.z,
the quality of solutions found by h-KS.

The deviation remains very low in general, indicating that h-KS is effective
when considering query interestingness. Deviations are greater for small instances
and decrease with larger instances. This is expected since, for smaller instances, as
the distribution of interestingness is uniform and the size of solutions is fixed, the
probability of picking an uninteresting query is higher.

Our second experiment consists in measuring the recall of comparison queries in
the solution, i.e., the proportion of queries present in the optimal solution that are
found by the heuristic. We use the same protocol as above, and show the average

5.6. Experimental results 67

Table 5.6: Deviation to optimal solution
#Queries Recall (Algorithm 1) Recall (Baseline)

100 0.285 ± 0.085 0.122 ± 0.062
200 0.296 ± 0.054 0.089 ± 0.038
300 0.270 ± 0.041 0.094 ± 0.028
400 0.285 ± 0.033 0.087 ± 0.021
500 0.285 ± 0.027 0.094 ± 0.024
600 0.279 ± 0.032 0.095 ± 0.017

Table 5.7: Notebook generators for user tests
Name Sampling Sample Interestingness Solving

size TAP
Naive-exact - 100% full CPLEX
WSC-approx - 100% full Algo. 1
WSC-approx-sig - 100% sig. only Algo. 1
WSC-approx-sig-cred - 100% sig. and cred. only Algo. 1
WSC-unb-approx unbalanced 10% full Algo. 1
WSC-rand-approx random 10% full Algo. 1

recall in Table 5.6.
We observe that the heuristic manages to find around 30% of the queries present

in the optimal solution, on average, varying very little with the instance size. While
this recall appears relatively low, it is counterbalanced by the fact that the heuristic
picks queries with high interestingness for the remaining 70% of the solution, as
illustrated by the deviations in Table 5.6. We implemented a baseline consisting of
picking the top εt queries in terms of interestingness, and compared the recall of
this Baseline to that of Algorithm 1. As shown in Table 5.6, Algorithm 1 is steadily
around 2.5 to 3 times better than the Baseline.

5.6.5 Human evaluation

This last test aims at answering the following questions: which version of the note-
book generator is favored by users? Are the notebooks generated using sampling or
approximating the TAP also approved by users?

For this test, we recruited 9 volunteer PhD students or lecturers from France
and Italy with at least some basic knowledge in data science. We generated a
collection of 6 notebooks of 10 comparison queries each on the ENEDIS dataset,
using different versions of our generator detailed in Table 5.7. The versions of Naive-
exact, WSC-approx, WSC-unb-approx, and WSC-rand-approx are as described in
Table 5.3. In addition, we used two more versions of WSC-approx: WSC-approx-sig
is WSC-approx where the interstingness score of the comparison queries is computed
with only the significance of the insights, i.e., without conciseness nor credibility,
while WSC-approx-sig-cred is WSC-approx, where the interstingness score of the
comparison queries is computed with the significance and credibility, but without

68 Chapter 5. Applications

Figure 5.9: Qualitative human evaluation

conciseness.
The generated notebooks were deployed on Jupyter10 and were presented to the

volunteers, insisting on the fact that the notebooks have to be considered as starting
points of the exploration of a potentially unknown dataset. We also provided a brief
data dictionary explaining some business terms of the ENEDIS dataset. We asked
them to rate the notebooks, on a scale from 1 (lowest) to 7 (highest), using the
4 criteria proposed in [El et al. 2020]: (1) Informativity — How informative is the
notebook and how well does it capture dataset highlights? (2) Comprehensibility —
To what degree is the notebook comprehensible and easy to follow? (3) Expertise
— What is the level of expertise of the notebook composer? (4) Human Equivalence
— How closely does the notebook resemble a human-generated session?

We show the average scores given by testers in Figure 5.9. In general, the main
observations are that WSC-rand-approx and SC-approx-sig dominates the other on
all criteria, while Naive-exact is dominated on all criteria. The fact that WSC-rand-
approx obtains the best scores indicates that sampling does not seem to systemat-
ically affect how users consider the insights in the notebooks. In particular, even
if some insights may be missed by the approach, as explained above, the generated
notebook can still be deemed informative. The low scores received by Naive-exact
tend to indicate that an exact solution is not needed for a notebook to be well per-
ceived by users. As to the interestingness measure, the test is inconclusive in ruling
out one or the other of the components, from a user’s perspective. We also recall
that notebooks were generated with values of εd favoring solutions where comparison
queries are very close to each other, which may have disappointed users preferring
more diversity in the notebook, and might explain the low scores on the Human

10https://datastory.lifat.fr/tree?#notebooks, Password: 1598Rksil%42TAP

https://datastory.lifat.fr/tree?##notebooks

5.7. Conclusion 69

equivalence criterion. Interestingly, a statistical t-test confirmed that the difference
in the positive evaluations received by WSC-rand-approx and SC-approx-sig is not
significant. Moreover, this difference is not significant either on the comprehensi-
bility criteria with WSC-approx-sig-cred (even if in this case the p-value is around
0.16 which indicates a weaker confidence in the conclusion). Another interesting
observation concerns Naive-exact, which is supposedly the optimal approach. How-
ever, human evaluations rather show that it is overall the least appreciated method.
This is nuanced by the following elements: (i) recall studies as presented in Table
5.6 show that in general around 30% of the queries in Naive-exact and the other ap-
proaches are actually the same, and (ii) t-tests on human evaluation criteria results
show that there are no significant differences between Naive-exact and WSC-approx
or WSC-unb-app approaches. The latter point confirms the previous observations:
firstly, our heuristic is perceived similarly as an exact solution, and secondly, it
cannot be said that sampling impacts how human evaluate the notebooks.

5.7 Conclusion

This work addressed the problem of generating SQL notebooks of comparison queries
to support Exploratory Data Analysis. We introduced the definitions of comparison
insights, hypothesis queries, comparison queries, and comparison query interesting-
ness, and formalized the problem of generating notebooks of comparison queries
that are insightful and coherent.

The results on runtime, especially Figure 5.6 on the breakdown of runtime be-
tween TAP instance construction and solving, highlight the need for a novel ap-
proach. Indeed, although we were able to construct and use various optimization
schemes to accelerate instance generation, it still takes the vast majority of the run-
time. We speculate the most efficient approach would be to only partially generate
the TAP instance.

The next and final chapter of this thesis addresses the solution of the TAP
without generating the complete instance.

Chapter 6

Results on non-enumerable space

Contents
6.1 Motivation . 71
6.2 A query generation Method 72
6.3 Query evaluation and generation 74

6.3.1 Estimating interest, time and distance 74
6.3.2 Generation of the starting pool 75
6.3.3 Improving Query Generation 79

6.4 Experiments . 85
6.4.1 Starting pool generation methods 87
6.4.2 Dual Model solver tuning . 91
6.4.3 Improving Query Generation 95
6.4.4 Running times . 96

6.5 Conclusion . 96

6.1 Motivation

In Section 4, we demonstrated that given a small or medium database, we can
generate all comparison queries, compute a complex interestingness measure and
solve a large TAP instance within an hour of CPU time. However, this was only
possible at the cost of several optimizations at every step of the process. Therefore, a
different approach is needed to tackle larger databases with more than a few million
comparison queries. As some of those optimizations rely on storing data in RAM
it’s expected scaling them to larger databases may not be possible. Our approach’s
run time was mainly affected by generating the instance, as seen in Figure 5.6.
Therefore, our best course of action is to design a process that does not require us
to generate all comparison queries and evaluate their cost and interest. Hopefully,
we can identify methods for solving similar problems in both the OR and Database
research communities.

Context A similar problem to the intractable enumeration of all comparison
queries arises in the OR community. Indeed some problems, such as (but not limited
to) vehicle routing problems ([Feillet 2010]), may be formulated with an exponen-
tial number of variables but few constraints. This makes using a classic LP or MIP

72 Chapter 6. Results on non-enumerable space

solver intractable for even small instances. To solve this issue, Column Generation
(CG) only considers a subset of the problem’s variable at a time. This smaller prob-
lem is often called Restricted Master Problem (Restricted Master Problem (RMP))
([Winston 2022]). CG then relies on iteratively solving a sub-problem called Pricing
Problem (PP); its role is to select variables that are added to the RMP in order to
improve its current best solution. This method can be repeated until no improving
variable can be found to obtain an optimal solution. However, it can also be used as
a heuristic by limiting the number of iterations or using approximation when solving
the sub-problem.

In the database community, a fairly recent way to automate EDA is through the
use of Reinforcement Learning (RL). In [Bar El et al. 2019], Bar EL et al. propose
to use RL to train an agent, performing a small set of actions sequentially. The agent
only considers the next query accessible from its current query, such as a more spe-
cific filter or a different aggregation function. This effectively limits the search space
to the neighborhood of the starting query. Similarly, in [Personnaz et al. 2022], Per-
sonnaz et al. created an RL-augmented EDA tool dedicated to the exploration of
data from the Sloan Sky Survey [Blanton et al. 2017]. They let the user decide when
and how to use the RL agent they trained, either in a semi-automated fashion or by
allowing it to construct a complete session. Unfortunately, the algorithms proposed
in those first attempts at using RL for solving the automated EDA problem exhibit
the behavior of typical greedy algorithms. They suffer from pitfalls like greedy algo-
rithms, such as severe sensibility to initialization and lack of backtracking capability.

Compared to RL-based approaches such as [Bar El et al. 2019,
Personnaz et al. 2022], column generation does not construct its final solution
iteratively. Instead, it produces a new one each time the RMP is solved. As a
result, RL-based approaches may be locked into early ’bad choices’ that cannot
be undone, like greedy algorithms. This is notable in the results presented by
[Personnaz et al. 2022], where the RL-based approaches only marginally outperform
the author’s greedy heuristic at a tremendous training time cost (100 hours on
server-grade hardware). Furthermore, in all RL works on EDA we identified
training seems to be necessary on a per-dataset basis. We choose to pursue our use
of OR tools as it seems to offer a more efficient use of computing resources.

By transposing column generation to our context, we propose an approach with
a TAP problem restricted to a subset of all comparison queries and a problem that
constructs additional queries improving the TAP’s solution. Since our approach is
only inspired by column generation, and to avoid confusion, we do not use the RMP
and PP terminology. We name the restricted TAP primal and its query construction
sub-problem dual.

6.2 A query generation Method

Refresher on definitions We refer the reader to Section 4.2 for a refresher on
the TAP MIP as it will be used as a basis for new models described in this chapter.

6.2. A query generation Method 73

Furthermore, as the method described in this chapter constructs comparison queries,
we point the reader to Section 3.4 for their definition and properties.

Query generation (QG) draws heavily from column generation in its design. The
general principle described in Algorithm 8 is similar to many column generation
methods. First, a small subset of queries, commonly denoted by Q′, is sampled
from the complete set of all queries Q (Line 1). Then, an iterative process solves a
dual problem that aims to generate a query that improves the optimal solution of the
primal over Q′ (Line 2-4). This query is then added to Q′. After the final iteration,
the primal is solved over Q′ (now containing the subsequently generated queries)
to return a solution (Line 6). Since the size of Q′ is small, any method previously
described (see Chapter 4), such as heuristics, matheuristics, or MIP solver, can be
used to obtain the final TAP solution.

Algorithm 8 General query generation algorithm
Require: A relation R, epsilon constraints values (εt and εd), and an initialization

strategy init that draws queries from Q. npool and ngen integers, respectively,
the size of the starting pool and the number of queries to generate using the
dual MIP.

Ensure: A solution to the TAP of service-time at most εt and overall distance at
most εd.

1: Q′ ← init(npool, Q).
2: while |Q′|< npool + ngen do
3: q′ ← solve dual MIP
4: Q′ ← Q′ ∪ {q′}
5: end while
6: Solve TAP on Q′

In the context of query generation, the dual problem needs to construct a com-
parison query that can be added to a solution to the original TAP problem over Q′.
This immediately raises an issue, indeed, when solving TAP either using a MIP or
a heuristic, it was typically assumed that all queries were known beforehand. This
allowed the use of any method found in the literature to compute interest, time, or
distance. Indeed when considering the problem’s formulation, they were constants.
However, the dual problem needs to incorporate methods to estimate all three as
part of its formulation. To avoid falling back to the untractable enumeration of all
queries, the estimators need to be independent of query evaluation. This yields our
first research question: (RQ1) How can linear estimators dependant only on
instance statistics and query text be expressed to compute time, interest,
and distances of queries?

Furthermore, a method must be devised to create a starting pool of queries
to populate Q′ before the dual can be used to generate new queries. Indeed, as
previously implied, the dual is usually formulated to improve an existing solution
over an existing set. This yields a cold start problem. While the obvious solution of
randomly creating a starting pool of queries is always possible, intuitively, a good

74 Chapter 6. Results on non-enumerable space

starting set of solutions is expected to lead to a more efficient algorithm. Obviously,
this process has to be as fast as possible to increase the number of dual iterations.
This constitutes our second research question: (RQ2) How can we generate a
pool of relevant queries to bootstrap the query generation process ?

In the query generation process, the dual problem is considered to be the most
crucial aspect. It involves creating a new comparison query that takes into account
the solution to the TAP on Q’, as well as its interest, time, and distances as com-
puted by estimators. The dual should be solved quickly to enable more iterations.
Moreover, it is important to ensure that any approximations made while solving the
dual do not result in generating queries that do not contribute to enhancing the
solution. This yields our final research question: (RQ3) How can we efficiently
generate a query that improves a TAP solution ?

6.3 Query evaluation and generation

In this section, we first address RQ1 and present methods to estimate time, interest,
and distance between queries. We then move to RQ2 and elaborate on several
algorithms to bootstrap the query generation process. Finally, we address RQ3 and
present two MIP models to generate improving queries.

6.3.1 Estimating interest, time and distance

As previously mentioned enumerating Q is intractable for large databases. This has
consequences on the way we compute interest and time for queries. Measures that
rely on the results of the queries, such as the one used in [Chanson et al. 2022a],
and many others from the literature (see Section 2.5), are not usable in this context.
Likewise, querying the DBMS planner for every estimated execution time would
defeat the advantages of not enumerating Q. Therefore, we must choose an inter-
estingness measure and query time estimate that can be computed from only the
query text itself, basic statistics on the database, and information about the DBMS
storage organization. Given we aim to construct a MIP model based on those es-
timators, we require linear analytical expressions of those estimators. This doesn’t
mean that machine learning, as we previously used (Chapter 5) is not possible, but
the model learned should remain linear. In this chapter, however, as we are inter-
ested in evaluating the potential of query generation, we will not use any machine
learning methods that would add an extra layer of noise.

Interest Estimator As discussed in Section 2.5, many interestingness measures
in the literature rely on query results. The reliance on the result (or an approxi-
mation thereof) of the queries was the main factor driving the running time of our
previous approach (Section 5). The team behind Quickinsight ([Ding et al. 2019])
uses the market share to construct part of its interestingness. According to the
authors, this so-called impact can be computed using, among others, the COUNT
aggregation function. Using this particular aggregation function, impact represents

6.3. Query evaluation and generation 75

the number of tuples used to compute the comparison query result, divided by the
total number of tuples in the database. Notably, this is similar to the confidence
measure used in rule mining [Geng & Hamilton 2006]. Given a comparison query
τA((γA,agg(α)→left(σB=val(R))) ▷◁ (γA,agg(α)→right(σB=val′(R)))) its impact can be
computed directly as (γCOUNT (∗)(σB=val∨B=val′(R)))/γCOUNT (∗)(R). This impact
measure can also be computed using only query text and the selectivity estimates
of the DBMS ([Garcia-Molina et al. 2009]). Indeed given selBval and selBval′ the esti-
mators. It can be expressed as a linear function which is presented along with the
dual model in Section 6.3.3 equation (6.3).

Time Estimator Given the nature of the comparison query pattern the logi-
cal execution plan for different queries is always the same Figure (6.1.a). Like-
wise, when no secondary data structures are present, and the relation is not sorted
on disk, optimizers will tend to produce the same plan for many queries. Figure
(6.1.b) shows a typical plan produced by the Postgresql optimizer for executing
a comparison query. Note that most of the time is spent performing the table
scan, which leaves very little influence on other choices such as the join opera-
tor. Significant changes to the physical plan can occur only when sorting or sec-
ondary data structures such as materialized views or indexes are present. The
presence of such a structure should be expected in many cases. Indeed both tra-
ditional DBMS ([Chaudhuri et al. 1999, Dageville et al. 2004]) and cloud-based so-
lutions ([Das et al. 2019]) incorporate automated systems to create such structures
with limited (or no) user input.

Considering this peculiarity, we propose to create a simple estimator that reflects
the redundant optional structures in place that could significantly influence the ex-
ecution time. Therefore, we assume that query execution time is only dependent
on which attributes are used for selection and group by. Thus, for each relation, we
consider a series of constants that describes the execution time of a query for every
(ordered) pair of attributes p ∈ {(A1, A2)|A1 > A2, A1 ∈ A, A2 ∈ A}. These con-
stants can be quickly estimated by running a few queries for each pair of attributes
or by analysis of the DBMS’s catalog of secondary structures.

Distances We use the distance proposed in Section 5.4.1 based on Aligon’s Work
([Aligon et al. 2014]) only relies on query text and thus can be used directly for our
QG approach. This distance is based on the differences between query parts, with
the weights representing the importance of the query parts in the transition from
one comparison query to another. Precisely : val, val′ the highest, followed by B,
then A, and finally M and agg have the lowest impact.

6.3.2 Generation of the starting pool

Our method introduces a cold start problem; although the dual can generate hun-
dreds of queries, its formulation relies on simultaneously constructing a new query
and a TAP solution including this new query. Therefore, we need an initial set of

76 Chapter 6. Results on non-enumerable space

Figure 6.1: Logical and physical execution plan for a typical comparison query

6.3. Query evaluation and generation 77

queries to build the first few solutions.The queries in this pool should ideally be
diverse to avoid steering the process to a local minimum. They should also produce
high-quality TAP solutions when considered as whole instances and solved using
methods previously introduced in Chapter 4. Indeed, starting from good solutions
may require fewer iterations of the dual to reach the desired quality of the final solu-
tion. Furthermore, in pursuing a high-quality final solution, intuitively, high-interest
and low-cost queries will improve the quality of the solution.

We propose several methods, divided into two separate categories, called top-
down and bottom-up methods. Top-down methods take a large sample of randomly
generated queries and reduce it to the required starting pool size. On the other hand,
bottom-up methods start with one seed query and generate the rest of the pool. This
seed query can be randomly generated or issued by the user. Although this is making
them closer to the semi-automatic approach presented in [Bar El et al. 2019], unlike
in [Bar El et al. 2019] this seed query may later be discarded and not included in
the final TAP solution.

Bottom-up We propose two methods that perform a bottom-up generation of
the starting pool; they can both be formulated as MIP, similar to Dual-MIP. The
first method intensification generates a set of queries whose distance is the smallest
possible to all the previous queries. This distance takes into account: interestingness,
time, and the hamming distance used in our previous work ([Chanson et al. 2022a]).
This MIP relies on the same variables as the dual MIP described in Section 6.3.3
but with a reduced set of constraints (namely constraints (6.4), (6.5), (6.6), (6.7),
(6.8), (6.11) and (6.12)) and a specific objective :

(6.1)

min
n∑

i =1

 na∑
k=1

ψk(1− Si,k) + (1− ψk)Si,k +

∣∣∣∣∣∣Ii −
na∑
k=1

D(Ai)∑
j=1

βkj(lkj + rkj)

∣∣∣∣∣∣
+

∣∣∣∣∣∣Ti −
na∑
k=1

na∑
j=1,k ̸=j

ωkjϕkj

∣∣∣∣∣∣

Where Ti and Ii are the known interestingness and time (constants) of already
generated queries in the pool. The linearization of the absolute values is omitted for
clarity. A detailed description of the intensification method is provided in Algorithm
9

The second approach is called the diversification method. It aims to create
queries as distinct as possible from the seed and the previous queries. It is identical
to the previously described intensification approach except for its objective being
reversed to a maximization.

Both diversification and intensification methods can also be combined to create
a further two bottom-up approaches described in Figure 6.2.

Top-down Top-down methods rely on pruning a random sample (larger by at
least an order of magnitude than the desired starting pool size) of queries to a much

78 Chapter 6. Results on non-enumerable space

Algorithm 9 Intensification
Require: A seed query q0, the size of the desired starting pool npool.
Ensure: A set of queries of size npool similar to q0.
1: P ← {q0}
2: while |P |< npool do
3: q′ ← solve intensification MIP
4: P ← P ∪ {q′}
5: end while
6: return P

Figure 6.2: Overview of the combined bottom-up starting pool generation methods

smaller starting pool. The first approach, Random-Then-Sort, sorts the random
sample according to each query’s interest/time ratio; the starting pool is then drawn
from the top-k queries according to this ratio in descending order. This approach is
simple and as fast as the sorting algorithm used. It should guarantee a set of very
interesting, and fast queries; however, it ignores other factors, such as distance or
the diversity of queries. The second approach, Random-KS, consists of applying the
h-KS heuristic (Algorithm 1) on the random sample and using the queries of the
solution found as the starting pool. If required, this can be repeated on the rest of
the sample as shown in Algorithm 10.

The last approach, called Hybrid-KMeans++, adds to Random-KS a trick used
for centroid initialization in Kmeans clustering. The detailed algorithm is described
in Algorithm 11. We first obtain a heuristic solution on the sample like the Random-
KS approach (Line 1). Next, the rest of the queries are generated to introduce
diversity and coverage in the starting pool (Lines 4-13). This is done by using
the same probabilistic distance-based sampling used in the KMeans++ algorithm
[Arthur & Vassilvitskii 2007] (Line 5-9). This algorithm was initially designed to
avoid the tendency of the Kmeans heuristic to fall into local optima when starting
with random cluster centroids.

6.3. Query evaluation and generation 79

Algorithm 10 Random-KS
Require: The size of the desired starting pool npool. A random query sample, S,

drawn uniformly from Q. The epsilon constraint values (εt and εd).
Ensure: A set of queries (starting pool) of size npool.
1: s0 ← h-KS(S, εt, εd) (see Algorithm 1)
2: P ← set(s0)

3: S ← S \ P
4: while |P |< npool do
5: si ← h-KS(S, εt, εd)
6: P ← P ∪ set(si)
7: S ← S \ {si}
8: end while
9: return P

Algorithm 11 Hybrid-KMeans++
Require: The size of the desired starting pool npool. A random query sample, S,

drawn uniformly from Q. The epsilon constraint values (εt and εd). A total
order over S allowing sequence-like access to the set elements.

Ensure: A set of queries (starting pool) of size npool.
1: s0 ← h-KS(S, εt, εd) (see Algorithm 1)
2: P ← set(s0)

3: S ← S \ P
4: while |P |< npool do
5: for q ∈ S do
6: w[i]← argminj d(q, q

′), q′ ∈ P ▷ Distance to closest query in S
7: end for
8: w ← norm(w) ▷ Normalize w s.t. wi = wi/

∑|S|
j=1wj

9: k ← Random([1, |S|], w) ▷ Draw random integer weighted by w
10: qs ← S[k]

11: S ← S \ {qs}
12: P ← P ∪ {qs}
13: end while
14: return P

6.3.3 Improving Query Generation

According to RQ3, the dual needs to construct a query improving the current
solution to the primal on a given subset Q′ ⊂ Q. The simplest approach would be
to solve the primal on Q′ using a MIP solver. For maximum flexibility, we choose to
express the dual problem as a MIP that incorporates variables and constraints from
the primal in its formulation. The dual will construct simultaneously a new query
and a solution to TAP over Q′ containing this query. A set of binary variables will
describe the new query while the TAP objective and epsilon constraints (see Section

80 Chapter 6. Results on non-enumerable space

4.2) are modified to consider the new query as part of the TAP solution. We choose
to ’force’ the inclusion of the new query in the solution. This avoids the need for
two linearizations and provides a potential way to stop the cycle of dual iterations if
we observe adding a query has degraded the previous solution. We name this model
Dual-MIP.

We also provide an alternative model where the primal variables are considered
as a linear relaxation and sub-tour elimination constraints are removed, we name
this alternative model Dual-LP. The main goal of the Dual-LP is to provide a model
faster to solve, enabling more iterations within a given time limit.

6.3.3.1 Dual-MIP and Dual-LP models

Data

Si,j ∈ {0, 1}, with i ∈ 1...|A|, j ∈ 1...n denotes the presence of the ith categorical
attribute in the selection of qj .

βi,j ∈ {0, 1}, with i ∈ 1...|A|, j ∈ 1...D(Ai) the selectivity of the jth value of the
categorical attribute Ai over R.

ϕij , with i ∈ 1...|A|, j ∈ 1...|A|, i ̸= j denotes the estimated time to execute the
query: τAi((γAi,agg(α)→left(σAj=val(R))) ▷◁ (γAi,agg(α)→right(σAj=val′(R)))). Where
the ith categorical attribute is used for aggregation and the jth is used for selection.

Variables

αi =

1 if Mi is the measure used in

the comparison query
0 otherwise

,∀i ∈ 1..|M|

Γi =

1 if Ai is a categorical attribute used in the

group by set of the comparison query
0 otherwise

, ∀i ∈ 1...|A|

ψi =

1 if Ai is a categorical attribute used

for selection in the comparison query
0 otherwise

,∀i ∈ 1...|A|

zi =

1 if aggi is the aggregation function used

in the comparison query
0 otherwise

,∀i ∈ 1...|F|

6.3. Query evaluation and generation 81

lij =

1 if constant j in the active

domain of Ai, adom(Ai) is
used as val

0 otherwise

,∀i ∈ 1...|A|,∀j ∈ 1...D(Ai)

rij =

1 if constant j in the active

domain of Ai, adom(Ai) is
used as val′

0 otherwise

,∀i ∈ 1...|A|, ∀j ∈ 1...D(Ai)

ωij =

1 if Ai is a categorical attribute used in the
group by set of the comparison query
and Aj is a categorical attribute used
for selection in the comparison query

0 otherwise

,∀i ∈ 1...|A|, ∀j ∈ 1...|A|, i ̸= j

Finally, in addition to the Variables mentioned in this section, we add the vari-
ables from the main TAP problem Section 4.2. Their domain remained unchanged
for Dual-MIP while they are relaxed in [0, 1] for Dual-LP.

Objective

max

n∑
i=1

piyi + I (6.2)

With I an estimation of the interest (market share) of the new query:

I =

|A|∑
i=1

D(Ai)∑
j=1

βij(lij + rij) (6.3)

Constraints First, several constraints are needed to ensure we respect the com-
parison query pattern defined in Section 3.4.

|F|∑
i=1

zi = 1 (6.4)

Constraint (6.4) ensures the query has only one aggregation function.

|M|∑
i=1

αi = 1 (6.5)

Constraint (6.5) ensures we select one measure.

82 Chapter 6. Results on non-enumerable space

|A|∑
i=1

Γi = 1 (6.6)

Constraint (6.6) ensures that one attribute is present in the group key.

|A|∑
i=1

ψi = 1 (6.7)

Constraint (6.7) ensures that one attribute is used for selection.

ψi + Γi ≤ 1, ∀i ∈ 1..|A| (6.8)

Constraints (6.8) ensure there is no overlap between attributes used for selection
and group by operations.

|A|∑
j=1,i ̸=j

ωij ≥ Γi, ∀i ∈ 1..|A| (6.9)

|A|∑
j=1,i ̸=j

ωji ≥ ψi,∀i ∈ 1..|A| (6.10)

Constraints (6.9) and (6.10) ensure that ωij is tied to variables describing the selec-
tion and group by operations of the pattern.

D(Ai)∑
j=1

lij =

D(Ai)∑
j=1

rij ≤ ψi, ∀i ∈ 1..|A| (6.11)

lij + rij ≤ 1,∀i ∈ 1...|A|, ∀j ∈ 1...D(Ai) (6.12)

Constraints (6.11) and (6.12) ensure that if an attribute is used for selection we
take one constant from its domain as val and another as val′.

We also add the constraints from the original TAP model (see Section 4.2), ex-
cept sub-tours elimination constraints (4.7) only present in Dual-MIP. The epsilon
constraints (4.2), (4.3), from the original model are modified to incorporate estima-
tors for query time and distances. First, we introduce the estimator described in
Section 6.3.1 into the time epsilon-constraint:

n∑
i=1

tiyi +

|A|∑
i=1

|A|∑
j=1,i ̸=j

ωijϕij ≤ εt (6.13)

6.3. Query evaluation and generation 83

Next, we modify the distance epsilon-constraint, incorporating the Hamming
distance to the new query:

(6.14)

n∑
i =1

n∑
j =1,j ̸=i

di,jxi,j

+

n∑
i =1

xi,n+1

 |A|∑
k=1

ψk(1− Si,k) + (1− ψk)Si,k

+

n∑
i=1

xn+1,i

 |A|∑
k=1

ψk(1− Si,k) + (1− ψk)Si,k

 ≤ εd
Finally, for every query previsouly generated or in the starting pool qe ∈ Q′ a

duplicate elimination constraint is added to the model:

(1− Γγ) +

 |A|∑
i=1,i ̸=γ

Γi

+ (1− αµ) +

 |M|∑
i=1,i ̸=µ

αi

+ (1− lρ,v1) + (1− rρ,v2)

+

|A|∑
i=1

D(Ai)∑
j=1,¬(i=ρ & j=v1)

li,j +

|A|∑
i=1

D(Ai)∑
j=1,¬(i=ρ & j=v2)

ri,j

≤ |A|+|M|+2

 |A|∑
i=1

D(Ai)

− 1,∀qe ∈ Q (6.15)

Where γ is the index (position w.r.t. the total order over A) of the qe group by
attribute, µ the index of its measure, ρ the index of its selection attribute, and sl
ans sr the indexes of the attributes values used for both left and right selections.

Linearization of (6.14) As the modified distance epsilon-constraint is non-linear
its use in a MIP requires linearization. The following constraints and variables are
used in it’s it’s place:

n∑
i=1

n∑
j=1,j ̸=i

di,jxi,j +
n∑

i=1

Di +D′
i ≤ εd (6.16)

Di ≥

 |A|∑
k=1

ψk(1− Si,k) + (1− ψk)Si,k

− (1− xi,n+1)M,∀i ∈ 1...n (6.17)

D′
i ≥

 |A|∑
k=1

ψk(1− Si,k) + (1− ψk)Si,k

− (1− xn+1,i)M,∀i ∈ 1...n (6.18)

84 Chapter 6. Results on non-enumerable space

Di ≤ xi,n+1M,∀i ∈ 1...n (6.19)

D′
i ≤ xn+1,iM,∀i ∈ 1...n (6.20)

With Di ∈ N and M = 2(|A|+|M|+1) + 1.

6.3.3.2 Symmetry elimination constraints

In this section, we discuss possible symmetries in the dual and how we address them.
Indeed, symmetries in a MIP may reduce the performance of a mathematical solver.
For example, one symmetry that can be removed is directly linked to the query
pattern.

Consider q1 = τA((γA,agg(α)→left(σB1=v1(R))) ▷◁ (γA,agg(α)→right(σB1=v2(R))))

and q2 = τA((γA,agg(α)→left(σB1=v2(R))) ▷◁ (γA,agg(α)→right(σB1=v1(R)))). Although
syntactically different queries, they are the same query. Only differing in the pre-
sentation of their result. Those queries were previously eliminated during instance
generation in our previous works ([Chanson et al. 2022a]).

To this extent, we propose two methods to eliminate symmetric queries; the
first method relies on a large set of constraints that relies on the lexical order
of attribute values to only allow queries qi = τA((γA,agg(α)→left(σB1=v(R))) ▷◁

(γA,agg(α)→right(σB1=v′(R)))) such that v ≤ v′.

k∑
i=1

D(Ai)∑
j=1

lij <=
k∑

i=1

D(Ai)∑
j=1

rij , ∀k ∈ 1..n (6.21)

k∑
j=1

lij <=

k∑
j=1

rij +

1−
D(Ai)∑
l=1

ril

 ,∀k ∈ 1..D(Ai),∀i ∈ 1..|A| (6.22)

The second method relies on creating an extra constraint for every query already
generated or initially present in the starting pool. This yields a set of constraints
very similar to (6.15).

(1− Γγ) +

 |A|∑
i=1,i ̸=γ

Γi

+ (1− αµ) +

 |M|∑
i=1,i ̸=µ

αi

+ (1− lρ,v1) + (1− rρ,v2)

+

|A|∑
i=1

D(Ai)∑
j=1,¬(i=ρ∧j=v1)

ri,j +

|A|∑
i=1

D(Ai)∑
j=1,¬(i=ρ∧j=v2)

li,j

≤ |A|+|M|+2

 |A|∑
i=1

D(Ai)

− 1,∀qe ∈ Q′ (6.23)

6.4. Experiments 85

Database enedis insurance flights
Tuples 114 527 12 694 445 5 819 079
Dimensions 7 13 6
Measures 2 2 3
|Adom| min-max 3-1295 2-931 7-6952
Comparison Queries 105 1.1× 107 1.22× 108

Table 6.1: Description of the databases used in query generation experiments

Where γ is the index (position w.r.t. the total order over A) of the qe group by
attribute, µ the index of its measure, ρ the index of its selection attribute, and sl
ans sr the indexes of the attribute values used for both left and right selections.

Although with the second approach, the number of constraints increases at each
iteration of the query generation, the overall number of constraints remains relatively
small in practice (only a few hundred). In contrast, the first set of constraints may
be as large as the number of distinct constants in R.

6.4 Experiments

In order to tune and evaluate our approach, we design three series of experiments.
Their goal is first to identify the most promising methods to generate starting pools.
The second experiment focuses on improving the query generation phase. We aim to
evaluate the behavior and performance of the mathematical solver for both the Dual-
LP and Dual-MIP improving query generation. And possibly tune the mathematical
solver to decrease the iteration time when solving the Dual-LP model. Finally, we
evaluate the overall performance of the solution process compared to a baseline
(Figure 6.3 (e)) where all queries are generated and the h-KS heuristic is used to
solve the TAP (see Section 5.6.3.4).

databases We choose three databases for the experiments. Table 6.1 provides a
summary of these database characteristics. They were chosen to represent three typ-
ical scenarios: enedis is a small database where a complete generation of comparison
queries and costly interestingness measures can be used. flights where the baseline
can still be executed in an hour. And finally insurance where the generation of all
comparison queries alone may take several hours, making the baseline intractable.
We choose three databases for those experiments. Two of them, enedis and flights,
were previously used in this thesis (see Chapter 5). The database called insurance
is a health insurance database from the United States: it contains data on insurance
rates collected as a part of the Medicare program1.

1https://www.kaggle.com/databases/hhs/health-insurance-marketplace

https://www.kaggle.com/databases/hhs/health-insurance-marketplace

86 Chapter 6. Results on non-enumerable space

Figure 6.3: Principle of the conducted experiments

6.4. Experiments 87

Designation pool size Generation method
rd_x

x ∈ {100, 200,
300, 500, 1000,
5000, 10000}

Uniform Random
rd_div_x Diversification (Figure 6.2 (b))
rd_int_x Intensification (Figure 6.2 (a))
rd_div_int_x Diversification then intensification (Figure 6.2 (d))
rd_int_div_x Intensification then diversification (Figure 6.2 (c))
rdsrt_x Uniform Random (x*100), select top-x

ratio (interestingness/time)
rdks_x Algorithm 10
kmeanspp_ Algorithm 11

Table 6.2: Summary of possible starting pool generations

All experiments are conducted on a Fedora Linux workstation, on a 2.3 GHz
Intel Xeon 5118 12-core and 377GB 2666 MHz of DDR4 main memory. Individual
test configurations run in a single-core configuration with 16GB of memory unless
another configuration is specified. The mathematical solver used for this series of
experiments is CPLEX version 20.10.

6.4.1 Starting pool generation methods

This first series of experiments aims to identify which method (see Section 6.3.2)
produces the best starting pool. We choose to evaluate the quality of a starting
pool by the quality of the TAP solution that can be built upon it. We compare
the solutions obtained by solving the TAP MIP, the vpls-sx matheuristic, and the
two heuristics (Figure 6.3 (b)) in terms of objective value on different pool sizes
and generation methods. We test 8 generation methods summarized in Table 6.2
on seven different sizes of starting pool (see columns 1 and 2 of Table 6.2) on the
three databases. One method, rd_x, will serve as a baseline; it is a simple random
query generator. Furthermore, to take account of the non-deterministic nature of
the algorithms for a given configuration, and size, each algorithm is run 20 times.
A timeout of one hour is used on each run.

We present in Tables 6.3, 6.4, 6.5 the deviation to the best-known solution pro-
duced by the heuristics2, matheuristic, and CPLEX on every starting pool configu-
ration for each database. On all databases, we notice that the bottom-up methods
are overall not fast enough and appear to time out most of the time. Therefore, we
omit the configurations that time out before producing the desired number of queries
from the result tables. However, the results in Table 6.3 show that in some limited
cases where the starting pool is small and the database is also small (enedis), one
of the bottom-up methods seems to produce the overall best solutions. On average
bottom-up methods do not perform well. In Table 6.4, the large random sample
(5000, 10000 queries) seems to produce overall excellent solutions. However, we also

2In order to simplify the result tables, we run both h-KS and h-TSP and only record the best
heuristic solution.

88 Chapter 6. Results on non-enumerable space

Heuristics Matheuristic CPLEX MIP
Method_Size min avg max min avg max min avg max

rd_100 58.9 64.9 72.9 58.7 64.7 72.8 58.7 64.7 72.8
rd_200 46.5 53.4 60.3 46.4 53.3 60.2 46.4 53.3 60.2
rd_300 37.7 47.2 53.4 37.7 47.1 53.4 37.7 47.1 53.4
rd_500 36.4 37.4 38.4 36.4 37.4 38.4 28.3 37.5 41.9
rd_1000 14.8 20.6 26.5 14.8 20.6 26.5 t. out t. out t. out
rd_5000 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out
rd_10000 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out
rdsrt_100 10.6 10.6 10.6 10.2 10.2 10.3 10.2 10.2 10.2
rdsrt_200 10.6 10.6 10.6 10.2 10.2 10.3 10.2 10.2 10.2
rdsrt_300 10.6 10.6 10.6 10.2 10.2 10.3 10.2 10.2 10.2
rdsrt_500 10.5 10.5 10.5 10.2 10.2 10.3 10.2 10.2 10.2
rdsrt_1000 10.5 10.5 10.5 10.2 10.3 10.5 t. out t. out t. out
rdsrt_5000 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out
rdsrt_10000 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out
rdks_100 10.5 10.5 10.5 10.2 10.2 10.2 10.2 10.2 10.2
rdks_200 10.5 10.5 10.5 10.2 10.2 10.4 10.2 10.2 10.2
rdks_300 10.5 10.5 10.5 10.2 10.2 10.5 10.2 10.2 10.2
rdks_500 10.5 10.5 10.5 10.2 10.5 10.5 10.2 10.2 10.2
rdks_1000 10.5 10.5 10.5 10.5 10.5 10.5 t. out t. out t. out
rdks_5000 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out
rdks_10000 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out

kmeanspp_100 46.8 49.3 51.4 46.8 49.3 51.4 46.8 49.3 51.4
kmeanspp_200 10.5 10.5 10.5 10.3 10.4 10.5 10.3 10.4 10.5
kmeanspp_300 10.5 10.5 10.5 10.2 10.2 10.5 10.2 10.2 10.2
kmeanspp_500 10.5 10.5 10.5 t. out t. out t. out t. out t. out t. out
rd_div_100 31.5 32.4 33.4 31.5 32.4 33.4 31.5 32.4 33.4
rd_int_100 4.7 31.6 100.0 4.7 31.6 100.0 4.7 31.6 100.0

rd_div_int_100 29.6 33.7 56.6 29.6 33.7 56.6 29.6 33.7 56.6
rd_int_div_100 0.0 19.3 40.1 0.0 19.3 40.1 0.0 19.2 40.1

Table 6.3: Deviation (%) to best known solution constructed on starting pools
(enedis database) by the heuristics, matheuristic, and CPLEX

6.4. Experiments 89

Heuristics Matheuristic CPLEX MIP
Method_Size min avg max min avg max min avg max

rd_100 48.4 55.4 61.9 48.4 55.2 61.9 48.4 55.2 61.9
rd_200 33.8 40.8 52.5 33.8 40.7 52.0 33.8 40.7 52.0
rd_300 25.9 32.7 43.0 25.9 32.6 42.7 25.9 32.6 42.7
rd_500 15.9 21.2 27.3 5.9 21.0 27.3 15.9 21.0 26.9
rd_1000 9.3 12.5 14.7 9.3 12.5 14.7 t. out t. out t. out

rdsrt_100 0.1 0.7 1.7 0.1 0.7 1.6 0.1 0.7 1.6
rdsrt_200 0.1 0.7 1.9 0.0 0.7 1.9 0.0 0.7 1.9
rdsrt_300 0.2 0.8 1.4 0.2 0.5 1.4 0.2 0.7 1.3
rdsrt_500 0.1 0.8 2.4 0.1 0.8 2.4 0.1 0.8 2.3
rdsrt_1000 0.1 0.7 1.9 0.1 0.7 1.9 t. out t. out t. out
rdks_100 0.1 0.9 2.5 0.0 0.9 2.5 0.0 0.9 2.3
rdks_200 0.1 0.7 2.3 0.0 0.7 2.3 0.0 0.6 2.2
rdks_300 0.1 0.7 1.8 0.0 0.6 1.8 0.1 0.7 1.8
rdks_500 0.1 0.8 1.9 0.1 0.8 1.9 0.1 0.7 1.8
rdks_1000 0.1 0.7 2.5 0.1 0.7 2.5 t. out t. out t. out
rdks_5000 0.1 0.8 2.1 t. out t. out t. out t. out t. out t. out

kmeanspp_100 18.4 28.2 44.8 18.4 28.2 44.8 18.4 28.2 44.8
kmeanspp_200 0.1 0.6 1.4 0.1 0.6 1.3 0.1 0.6 1.3
kmeanspp_300 0.1 0.8 2.0 0.1 0.7 2.0 0.1 0.7 2.0
kmeanspp_500 0.6 0.7 0.8 0.6 0.7 0.8 0.2 0.7 1.3

Table 6.4: Deviation (%) to best known solution constructed on starting pools
(insurance database) by the heuristics, matheuristic and CPLEX

90 Chapter 6. Results on non-enumerable space

Heuristics Matheuristic CPLEX MIP
Method_Size min avg max min avg max min avg max

rd_100 48.2 54.2 60.1 48.1 54.1 60.1 48.1 54.1 60.1
rd_200 31.8 39.1 46.4 31.8 38.9 46.2 31.8 38.9 46.2
rd_300 26.7 32.6 37.5 25.7 32.2 36.9 25.7 32.2 36.9
rd_500 20.0 25.1 33.4 20.0 25.1 33.4 18.6 24.5 32.4
rd_1000 5.6 12.4 17.4 5.6 12.4 17.4 t. out t. out t. out

rdsrt_100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rdsrt_200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rdsrt_300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rdsrt_500 0.0 0.0 0.0 0.0 0.0 0.0 77.8 96.4 98.7
rdsrt_1000 0.0 0.0 0.0 0.0 0.0 0.0 t. out t. out t. out
rdks_100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rdks_200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rdks_300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rdks_500 0.0 0.0 0.0 0.0 0.0 0.0 t. out t. out t. out
rdks_1000 98.6 98.7 99.6 t. out t. out t. out t. out t. out t. out

kmeanspp_100 21.8 24.0 25.5 21.8 24.0 25.5 21.8 24.0 25.5
kmeanspp_200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
kmeanspp_300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
kmeanspp_500 0.0 0.0 0.0 0.0 0.0 0.0 19.0 81.7 98.7

Table 6.5: Deviation (%) to best known solution constructed on starting pools
(flights database) by the heuristics, matheuristic and CPLEX

6.4. Experiments 91

Symmetry Breaking
Constraints (6.21) and (6.22)

Constraints (6.15)
CPLEX Heuristics

CPLEX Presolve
0 (disabled)

1

CPLEX SubMIP Node limit
500
250
50

CPLEX MIP Emphasis
0 (balanced)
1 (feasibility)
2 (optimality)

Table 6.6: CPLEX parameters (and their values) tested with the Dual-LP model

notice that both CPLEX and the matheuristic time out in this scenario. This hints
at those pools being unusable with a similar mathematical model, such as Dual-LP
or Dual-MIP, due to their size. Over the three databases, we notice the top-down
methods, rdsrt, and rdks, with pool sizes varying from 200 to 500, yield very good
solutions whatever the algorithm used to compute a solution next. For kmeanspp,
pools of 300 and 500 queries seem to approach rdks and rdsrt performance closely.
We propose to use rdsrt and rdks with pools of 200 and 300 queries, along with
kmeanspp with pools of 300 queries, in the remainder of this work.

6.4.2 Dual Model solver tuning

As stated previously, the IQG method uses two mixed integer linear programming
models, namely Dual-MIP and Dual-LP. In this second series of experiments, we aim
to verify our assumption about the performance of both models and tune the solver
to obtain the smallest possible iteration time. As preliminary tests have shown its
advantage in run-time, we focus our tuning on the Dual-LP model. In addition, the
Dual-MIP is used as a reference to ensure the quality of generated queries does not
suffer from the gains made on iteration time. We select nine (three for each database)
starting pools producing the best solutions (Figure 6.3 (b)). For each database, a
pool of 200 queries is generated by rdsrt and rdks (Figure 6.3 (d)). Given a fixed
number of 100 iterations, we will evaluate the time per iteration with different
values of various parameters and the use of symmetry-breaking constraints (Section
6.3.3). A summary of the tested configurations is given in Table 6.6, and details
about specific CPLEX parameters can be found in its documentation ([IBM 2021]).
Finally, we compare the generated queries of the fastest configuration to the Dual-
MIP approach given a similar computation time (Figure 6.3 (c)).

From the results presented in Table 6.7, we notice that some parameters, such
as the sub-MIP node limit, do not have a significant impact when compared to
the default configuration. We also notice that depending on the database, some
parameters have opposite influences on the time per iteration, notably: turning

92 Chapter 6. Results on non-enumerable space

Database configuration Min. Time Avg. time Max. Time

flights

default 383.5 609.1 1270.2
Cstr. (6.21) & (6.22) 2446.5 2838.2 3185.0

Cstr. (6.15) 3468.8 3552.6 3636.3
emp_feas 382.2 784.1 2690.4
emp_opt 414.7 658.0 2315.5

node_lim_250 391.2 645.0 1346.1
node_lim_50 386.3 655.0 1192.4
presolve_off 321.7 444.9 1336.7

enedis

default 769.3 1156.2 1567.1
Cstr. (6.21) & (6.22) 529.3 807.0 922.2

Cstr. (6.15) 919.4 1421.1 1561.2
emp_feas 581.3 1000.7 1356.3
emp_opt 769.5 1380.4 2879.5

node_lim_250 723.3 1126.0 1503.1
node_lim_50 775.4 1150.5 1500.7
presolve_off 751.7 1158.4 1887.4

insurance

default 1231.3 1787.7 2037.2
Cstr. (6.21) & (6.22) 818.7 1321.5 1457.5

Cstr. (6.15) 1692.2 2852.5 3246.7
emp_feas 1154.5 1705.3 1956.9
emp_opt 1233.6 1975.1 3308.3

node_lim_250 1045.5 1767.1 2076.4
node_lim_50 978.6 1743.3 2076.3
presolve_off 1797.1 2567.7 3144.9

Table 6.7: Minimum, average and maximum time taken for 100 iterations of Dual-
LP with various configurations on the three databases.

6.4. Experiments 93

Database configuration Min. Time Avg. time Max. Time

flights
default 383.5 609.1 1270.2
best 321.7 444.9 1336.7

enedis
default 769.3 1156.2 1567.1
best 598.0 615.7 643.8

insurance
default 1231.3 1787.7 2037.2
best 1601.0 1617.0 1650.0

Table 6.8: Minimum, average and maximum time taken for 100 iterations of Dual-
LP with best and default configurations.

off presolve gains time for flights and enedis but is detrimental on insurance; on
the other hand, custom symmetry elimination constraints (6.21) and (6.22) and
emphasis on feasibility are beneficial for insurance and enedis but not for flights.
Based on these findings, we choose to configure CPLEX in its best configuration
for each database:

• flights, disabling presolve;

• enedis, using our custom symmetry elimination constraints (6.21) and (6.22),
a 250 sub-MIP node limit and an emphasis on feasibility;

• insurance, using our custom symmetry elimination constraints (6.21) and
(6.22), a 50 sub-MIP node limit and an emphasis on feasibility.

Notably, on insurance, this combination of individually beneficial parameters is not
as useful as using our custom symmetry elimination constraints (6.21) and (6.22)
alone. We use these configurations for the remainder of this experiment and report
their time for 100 iterations compared to the default in Table 6.8.

Finally, to verify our hypothesis that the Dual-LP (with solver tuning) is ad-
vantageous when compared to the Dual-MIP, we run both algorithms, on the same
starting pools, with a 30-minute time limit. Then we solve the TAP on the starting
pool queries and the queries generated by both dual models. Similarly to Section
6.4.1, we use the MIP, the matheuristic, and the heuristics. We repeat the experi-
ment on 20 random starting pools (generated using rdks) for each database.

In Table 6.9, we present the minimum, average, and maximum deviations to
the best-known solution for each database on TAP instances generated by Dual-LP
and Dual-MIP. We also give the average number of iterations performed by each
approach in the 30-minute time budget in Table 6.10.

From Table 6.9, we identify that the best solution for all three databases is found
using Dual-LP combined with the matheuristic. The far larger number of iterations
reported in Table 6.10 for the Dual-LP method confirms our initial hypothesis that
a larger number of iterations is worth the inaccuracies introduced by the relaxation
in Dual-LP.

94 Chapter 6. Results on non-enumerable space

Dual-LP
Heuristics Matheuristic MIP

Database min avg max min avg max min avg max
enedis 0.13 0.13 0.13 0.0 0.00 0.09 0.0 0.41 3.30
flights 0.00 0.32 0.45 0.0 0.00 0.00 0.0 0.00 0.00

insurance 0.13 0.13 0.13 0.0 0.01 0.02 0.0 0.18 3.82

Dual-MIP
Heuristics Matheuristic MIP

Database min avg max min avg max min avg max
enedis 2.89 7.89 11.69 2.60 7.83 11.69 2.60 7.88 13.40
flights 0.69 0.98 1.18 0.21 0.48 0.67 0.21 0.48 0.67

insurance 9.07 12.28 17.70 9.07 12.18 17.68 9.07 12.11 17.32

Table 6.9: Deviation (%) to the best-known solution constructed on instance gener-
ated with either Dual-MIP or Dual-LP by the heuristics, the matheuristic, and the
MIP

Database nb. iterations Dual-MIP nb. iterations Dual-LP
enedis 19.9 (± 2.1) 143.2 (± 4.4)
flights 20.0 (± 5.4) 63.0 (± 3.2)

insurance 11.8 (± 1.8) 116.7 (± 4.3)

Table 6.10: Average number of iterations by Dual-LP and Dual-MIP in 30 minutes
for all databases

6.4. Experiments 95

da
ta

ba
se

starting pool Heurisitcs Matheuristic CPLEX MIP h-KS
min avg max min avg max min avg max

fli
gh

ts

kmeanspp_300 0.0 2.3 4.5 0.0 1.7 4.1 0.0 1.7 4.1
rdks_200 0.0 0.6 2.2 0.0 0.2 1.6 0.0 0.2 1.6
rdks_300 0.0 0.9 2.7 0.0 0.5 2.0 0.0 0.5 2.0 18.5
rdsrt_200 0.0 0.6 2.2 0.0 0.2 1.6 0.0 0.2 1.6
rdsrt_300 0.0 0.8 2.5 0.0 0.4 2.0 0.0 0.4 2.0

en
ed

is

kmeanspp_300 13.1 21.1 34.1 12.9 21.0 34.1 12.9 21.0 34.1
rdks_200 0.0 0.1 0.5 0.0 0.0 0.5 0.0 0.2 5.8
rdks_300 0.1 1.4 8.6 0.0 1.2 8.3 0.0 1.9 10.6 50.7
rdsrt_200 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.4 7.8
rdsrt_300 0.1 1.1 7.8 0.0 1.0 7.8 0.0 1.2 10.2

in
su

ra
nc

e

kmeanspp_300 0.1 13.5 26.8 0.0 13.3 26.4 0.0 13.2 26.4
rdks_200 0.1 0.8 3.9 0.0 0.6 3.8 0.0 0.7 3.7
rdks_300 0.0 2.3 10.7 0.0 2.2 10.6 0.0 2.2 10.6 37.1
rdsrt_200 0.0 0.8 3.9 0.0 0.6 3.5 0.0 0.6 3.5
rdsrt_300 0.0 2.0 10.3 0.0 1.9 9.9 0.0 1.9 9.9

Table 6.11: Deviation (%) to best-known solution constructed on instances gener-
ated by the query generation method, solved by the heuristics, matheuristic, and
CPLEX, compared to generating the complete instance and applying h-KS.

6.4.3 Improving Query Generation

In this experiment, we select the three best pool generation methods and pair them
with the best solver configuration for each database. We evaluate their performance
compared to the baseline approach described in Chapter 4, where all queries are
generated, and the complete TAP instance is solved. This generation takes under
10 minutes for the enedis database, an hour for the insurance database, and 6
hours for the flights database (we report the number of comparison queries in Table
6.1). As with previous experiments, a 1-hour time limit is imposed on the query
generation-based approaches, including 10 minutes reserved for solving the TAP
on the generated queries. The solutions are compared in terms of their objective
function’s deviation from the best-known solution.

The results of this experiment are shown in Table 6.11. Across all databases,
the query generation strongly outperforms the baseline approach. We note that the
kmeanspp_300, however, performs worse than the other query generation methods.
This is likely due to its longer running time, which reduces the number of iterations
of query generation that follow. Likewise, for rdks and rdsrt where smaller (200
queries) pools seem to perform better than larger (300 queries) pools. This is likely
due to a larger number of queries yielding longer and, thus, fewer iterations of query
generation. The significantly worse performance of the h-KS heuristic when solving
a complete instance versus a partial instance produced by query generation may be

96 Chapter 6. Results on non-enumerable space

explained by its behavior. Indeed, with no possibility of discarding a query as long
as it does not lead to violating an ε−constraint, it is possible that one or more high-
interest (and low-cost) queries are added to the solution despite being detrimental to
the solution in terms of distance. These detrimental queries might not be generated
by our query generation method since they would be seen as not improving when
solving the query generation problem (dual).

6.4.4 Running times

In this last series of experiments, we attempt to evaluate the minimum time needed
by our approach to maintain a high-quality solution. For all databases, we try
different running time budgets (up to an hour) with a reserved 10 minutes for
running the matheuristic. We report the gap to the best-known solution in Figure
6.4.

As with the previous set of experiments, we see that initializing the query gener-
ation step using kmeanspp produces the worst results. We can confidently confirm
that this is purely due to the running time of the approach as its performance ap-
proaches other methods as the time budget increases. We also notice that for the
two smaller databases (flights and enedis), a 20-minute budget is sufficient, while
a 30-minute budget for insurance can be used. Larger runtimes do not lead to
computing significantly better solutions.

6.5 Conclusion

In this chapter, we designed, implemented, and tested a method to solve the TAP
on an instance without generating it completely. We proposed several strategies to
initialize our newly designed query generation method and identified two, namely
rdks and rdsrt, that outperform the others. Our query generation method manages
to construct better solutions than the h-KS heuristic when this one exploits the full
set of queries. On larger databases, our method is also faster than generating this
full set of queries.

Interestingly, it appears that the behavior of the MIP solver, regarding its pa-
rameters, varies widely from one database to the other. Whether this behavior can
be reproduced with other solvers or predicted in any way remains out of the scope
of this thesis but may be explored in future works. Likewise, the introduction of
machine learning methods such as those used in our paper on lifelong pathways
([Chanson et al. 2021]) to learn interestingness could be explored as long as those
models can be expressed as linear analytic expressions. Given that reinforcement
learning based approaches were successfully used in EDA tasks, their use in our
method could be explored, notably to replace the Dual-LP and the Dual-MIP mod-
els.

6.5. Conclusion 97

Figure 6.4: Deviation (%) to best-known solution constructed by the matheuristic
using instances generated by the query generation method.

Chapter 7

Conclusion

We conclude this thesis by summarizing the various addressed challenges, raised
issues, our contributions, and possible prospects following this work.

The main goal of the thesis is to explore the contributions that could be made to
the field of automated exploratory data analysis (EDA) using tools and knowledge
from the OR community. As discussed in Section 2.5, automated EDA problems
can be modeled as extensions of the traveling salesperson problem that have been
extensively surveyed and studied by the operations research community.

The first challenge of this thesis is to identify the types of insights and queries
used by various authors in the relatively recent field of automated EDA. We elabo-
rate on the comparison insights as studies have shown their prevalence among data
workers’ manual explorations. We formally define comparison insights and their
associated comparison queries, thus providing a finite, countable search space for
the traveling analyst problem.

Although previously defined in one of our publications ([Chanson et al. 2020]),
we did not study its relation to transport problems and only provided a trivial
heuristic. In this thesis, we establish the relationship between TAP and the orien-
teering problem and provide a mathematical formulation for the TAP. We propose
two heuristics for solving TAP, focusing on different instance structures. We dis-
cuss possible cuts and instance pre-processing strategies to accelerate the solution
process of the TAP when using a mathematical solver. We finally introduce two dif-
ferent matheuristic strategies to solve the TAP. They provide high-quality solutions
to small-size instances faster than directly solving the MIP.

We develop a fully functional prototype constructing comparison query note-
books featuring comparison insights. To further this goal, we solve several practical
challenges linked to the generation and solution of large TAP instances (> 106

queries). Notably, the execution of millions of non-parametric statistical tests. We
conduct a user study, with its results indicating users are unable to distinguish
optimal solutions from heuristic solutions.

Finally, drawing inspiration from column generation, we propose to avoid the
costly construction of the complete TAP instances. We introduce the two-step query
generation process that first constructs a pool of starting queries before iteratively
finding improving queries. On larger databases, this process is faster than generating
the complete TAP instances. It produces better quality solutions than our heuristic
running on the complete set of queries.

100 Chapter 7. Conclusion

Future works

In Chapter 5, we highlight the long time dedicated to constructing TAP instances
in a real-world application. In Chapter 7, we propose an approach bypassing the
need to generate the complete TAP instance. However, improvements can still
be made to the instance construction methods proposed in Chapter 5. Notably,
a large portion of the construction time can be directly attributed to the large
number of non-parametric statistical tests executed. The use of non-parametric
tests is mainly due to the absence of prior knowledge about the data. Making any
distributional assumptions would be dubious in this context. In a separate work,
we conducted preliminary experiments attempting to identify normally distributed
samples in real-world open-source databases and apply parametric testing to them.
These preliminary results are promising. By detecting additional common distri-
butions and applying the relevant parametric tests, we believe this phase of the
construction instance could be significantly accelerated. However, introducing fur-
ther testing to choose parametric versus non-parametric tests should not introduce
a large overhead. To avoid this overhead, a statistically sound rule should be de-
signed. It should be able to identify the common distributions where parametric
testing is applicable while falling back to non-parametric tests as a last resort.

A key aspect for automating EDA remains the quality of the used inter-
estingness measure ([De Bie et al. 2022]). However, the goal of this thesis is
not to contribute or improve an interestingness measure for EDA. We acknowl-
edge the inevitable diversity of interestingness measures in the EDA commu-
nity ([De Bie et al. 2022, Amer-Yahia et al. 2023b]) and put forward the TAP as a
generic problem that adapts to many existing interestingness measures. Our heuris-
tic (and matheuristic) solution approaches are fully compatible with this philosophy.
They only require the pre-computed positive interestingness values for each query.
On the other hand, the query generation method requires a linear analytical ex-
pression of the interest. However, this limitation could be overtaken. Notably, by
taking inspiration from other work in the automated EDA field ([Bar El et al. 2019],
a reinforcement learning (RL) method could replace the MIP to generate queries
while retaining the general query generation algorithm. However, one of the main
issues of current RL-based approaches is the long training time and poor reusabil-
ity of the models. Fortunately, recent developments in RL ([Kobanda et al. 2023])
may allow us to learn efficiently even complex interestingness measures. Another
direction could be to use machine learning to learn a linear (or easily linearizable)
model that would act as a surrogate for the real interestingness measure within the
dual-LP MIP. With simple models often associated with fast learning algorithms, it
might even be possible to learn personalized interestingness measures ([Bie 2013])
for each user.

While testing our query generation algorithm (Chapter 7) we noticed that it
outperforms the h-KS heuristic, solving the complete instance while only generating
a few hundred queries. We speculate this is caused by high interestingness queries
with relatively large distances from the others. An additional step removing such

101

queries from the solutions constructed by h-KS, could prove beneficial. Likewise,
a periodic re-routing of the solution (using an off-the-shelf TSP solver) could be
beneficial. However, it appears that some interestingness and distance measures
for queries lead to very particular instances that require dedicated optimization
algorithms. These instances may have only a few distinct interest or distance values.
This may affect the behavior and the performance of the heuristics and the MIP
solvers. Since this is dependent on the specific interest measure(s) and distance
function(s) used in an application, it is hard to design a single heuristic that can
offer good performance in all scenarios. It may be possible to use machine learning
as a way to select an appropriate solution method based on instance characteristics.

Although we focus our efforts on developing a working prototype implementing
the TAP for the comparison queries, there are several other types of insights, such
as correlation or trend ([Zgraggen et al. 2018, Ding et al. 2019]). This is a major
issue when envisioning a completely automated EDA system. Dealing with each
type of insight would require not only more types of queries but potentially differ-
ent interestingness measures for each insight type. This would obviously broaden
the search space and thus produce larger instances of the TAP. But the main is-
sue would be ensuring that interestingness measures are comparable even if com-
puted by different means. [Ding et al. 2019] have attempted to solve this issue by
using a p-value as part of their interestingness measure, as no matter the statis-
tical test used, they always obtain a comparable value. However, as discussed by
[Amer-Yahia et al. 2023b] and summarized in Table 2.1, statistical significance is
only a single facet of interestingness.

Bibliography

[Agrawal & Srikant 2000] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algo-
rithms for Mining Association Rules. Proc. 20th Int. Conf. Very Large Data
Bases VLDB, vol. 1215, 08 2000. (Cited on page 10.)

[Aligon et al. 2014] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi
and Elisa Turricchia. Similarity measures for OLAP sessions. Knowledge
and Information Systems, vol. 39, no. 2, pages 463–489, 2014. (Cited on
pages 56 and 75.)

[Amer-Yahia & Roy 2018] Sihem Amer-Yahia and Senjuti Basu Roy. Interactive
Exploration of Composite Items. In EDBT, pages 513–516, 2018. (Cited on
page 12.)

[Amer-Yahia et al. 2023a] Sihem Amer-Yahia, Angela Bonifati, Lei Chen, Guoliang
Li, Kyuseok Shim, Jianliang Xu and Xiaochun Yang. From Large Language
Models to Databases and Back: A discussion on research and education, 2023.
(Cited on page 12.)

[Amer-Yahia et al. 2023b] Sihem Amer-Yahia, Patrick Marcel and Verónika Per-
alta. Data Narration for the People: Challenges and Opportunities. In Julia
Stoyanovich, Jens Teubner, Nikos Mamoulis, Evaggelia Pitoura, Jan Müh-
lig, Katja Hose, Sourav S. Bhowmick and Matteo Lissandrini, editors, Pro-
ceedings 26th International Conference on Extending Database Technology,
EDBT 2023, Ioannina, Greece, March 28-31, 2023, pages 855–858. OpenPro-
ceedings.org, 2023. (Cited on pages 1, 5, 7, 9, 10, 13, 100 and 101.)

[Archetti et al. 2015] Claudia Archetti, Ángel Corberán, Isaac Plana, José Maria
Sanchis and M. Grazia Speranza. A matheuristic for the Team Orienteering
Arc Routing Problem. European Journal of Operational Research, vol. 245,
no. 2, pages 392–401, 2015. (Cited on page 21.)

[Arthur & Vassilvitskii 2007] David Arthur and Sergei Vassilvitskii. k-means++:
the advantages of careful seeding. In ACM-SIAM Symposium on Discrete
Algorithms, 2007. (Cited on page 78.)

[Bar El et al. 2019] Ori Bar El, Tova Milo and Amit Somech. ATENA: An Au-
tonomous System for Data Exploration Based on Deep Reinforcement Learn-
ing. Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019. (Cited on pages 1, 8, 11, 72, 77 and 100.)

[Benjamini & Hochberg 1995] Yoav Benjamini and Yosef Hochberg. Controlling
The False Discovery Rate - A Practical And Powerful Approach To Mul-
tiple Testing. J. Royal Statist. Soc., Series B, vol. 57, pages 289 – 300, 11
1995. (Cited on page 58.)

104 Bibliography

[Benjamini 2010] Yoav Benjamini. Discovering the False Discovery Rate. Journal
of the Royal Statistical Society Series B: Statistical Methodology, vol. 72,
no. 4, pages 405–416, 08 2010. (Cited on page 58.)

[Bianchessi et al. 2018] Nicola Bianchessi, Renata Mansini and M. Grazia Speranza.
A branch-and-cut algorithm for the Team Orienteering Problem. Interna-
tional Transactions in Operational Research, vol. 25, no. 2, pages 627–635,
2018. (Cited on page 20.)

[Bie 2013] Tijl De Bie. Subjective Interestingness in Exploratory Data Mining. In
Allan Tucker, Frank Höppner, Arno Siebes and Stephen Swift, editors, Ad-
vances in Intelligent Data Analysis XII - 12th International Symposium, IDA
2013, London, UK, October 17-19, 2013. Proceedings, volume 8207 of Lecture
Notes in Computer Science, pages 19–31. Springer, 2013. (Cited on pages 8
and 100.)

[Blanton et al. 2017] Michael R. Blantonet al. Sloan Digital Sky Survey IV: Mapping
the Milky Way, Nearby Galaxies, and the Distant Universe. The Astronom-
ical Journal, vol. 154, no. 1, page 28, July 2017. (Cited on page 72.)

[Blount et al. 2020] Tom Blount, Laura Koesten, Yuchen Zhao and Elena Simperl.
Understanding the Use of Narrative Patterns by Novice Data Storytellers. In
Proceedings of CHIRA, pages 128–138, Budapest, Hungary, 2020. (Cited on
pages 9 and 21.)

[Cao et al. 2012] Xin Cao, Lisi Chen, Gao Cong and Xiaokui Xiao. Keyword-aware
Optimal Route Search. Proc. VLDB Endow., vol. 5, no. 11, pages 1136–1147,
2012. (Cited on page 12.)

[Chanson et al. 2020] Alexandre Chanson, Ben Crulis, Nicolas Labroche, Patrick
Marcel, Verónika Peralta, Stefano Rizzi and Panos Vassiliadis. The Trav-
eling Analyst Problem: Definition and Preliminary Study. In Il-Yeol Song,
Katja Hose and Oscar Romero, editors, Proceedings of the 22nd Interna-
tional Workshop on Design, Optimization, Languages and Analytical Pro-
cessing of Big Data co-located with EDBT/ICDT 2020 Joint Conference,
DOLAP@EDBT/ICDT 2020, Copenhagen, Denmark, March 30, 2020, vol-
ume 2572 of CEUR Workshop Proceedings, pages 94–98. CEUR-WS.org,
2020. (Cited on pages 13, 25 and 99.)

[Chanson et al. 2021] Alexandre Chanson, Thomas Devogele, Nicolas Labroche,
Patrick Marcel, Nicolas Ringuet and Vincent T’Kindt. A Chain Compos-
ite Item Recommender for Lifelong Pathways. In Matteo Golfarelli, Robert
Wrembel, Gabriele Kotsis, A. Min Tjoa and Ismail Khalil, editors, Big Data
Analytics and Knowledge Discovery, pages 55–66, Cham, 2021. Springer In-
ternational Publishing. (Cited on pages 49, 50 and 96.)

Bibliography 105

[Chanson et al. 2022a] Alexandre Chanson, Nicolas Labroche, Patrick Marcel, Ste-
fano Rizzi and Vincent T’kindt. Automatic generation of comparison note-
books for interactive data exploration. In Julia Stoyanovich, Jens Teubner,
Paolo Guagliardo, Milos Nikolic, Andreas Pieris, Jan Mühlig, Fatma Özcan,
Sebastian Schelter, H. V. Jagadish and Meihui Zhang, editors, Proceedings
of the 25th International Conference on Extending Database Technology,
EDBT 2022, Edinburgh, UK, March 29 - April 1, 2022, pages 2:274–2:284.
OpenProceedings.org, 2022. (Cited on pages 8, 36, 49, 74, 77 and 84.)

[Chanson et al. 2022b] Alexandre Chanson, Faten El Outa, Nicolas Labroche,
Patrick Marcel, Verónika Peralta, Willeme Verdeaux and Lucile Jacquemart.
Generating Personalized Data Narrations from EDA Notebooks. In Kostas
Stefanidis and Lukasz Golab, editors, Proceedings of the 24th International
Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP) co-located with the 25th International Conference
on Extending Database Technology and the 25th International Conference
on Database Theory (EDBT/ICDT 2022), Edinburgh, UK, March 29, 2022,
volume 3130 of CEUR Workshop Proceedings, pages 91–95. CEUR-WS.org,
2022. (Cited on pages 8, 49 and 50.)

[Chao et al. 1996] I-Ming Chao, Bruce L. Golden and Edward A. Wasil. A fast
and effective heuristic for the orienteering problem. European Journal of
Operational Research, vol. 88, no. 3, pages 475–489, 1996. (Cited on page 20.)

[Chaudhuri et al. 1999] Surajit Chaudhuri, Eric Christensen, Goetz Graefe,
Vivek R. Narasayya and Michael J. Zwilling. Self-tuning technology in mi-
crosoft sql server. IEEE Data Eng. Bull., vol. 22, no. 2, pages 20–26, 1999.
(Cited on page 75.)

[Cunningham et al. 2004] Conor Cunningham, Goetz Graefe and César A. Galindo-
Legaria. PIVOT and UNPIVOT: Optimization and Execution Strategies in
an RDBMS. In (e)Proceedings of VLDB, pages 998–1009, Toronto, Canada,
2004. (Cited on page 22.)

[Dageville et al. 2004] Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub,
Mohamed Zait and Mohamed Ziauddin. Automatic sql tuning in oracle 10g.
In Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30, pages 1098–1109, 2004. (Cited on page 75.)

[Das et al. 2019] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija
Jovanovic, Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang
Xu and Surajit Chaudhuri. Automatically Indexing Millions of Databases
in Microsoft Azure SQL Database. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, page 666–679, New York,
NY, USA, 2019. Association for Computing Machinery. (Cited on page 75.)

106 Bibliography

[De Bie et al. 2022] Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H
Hoos, Padhraic Smyth and Christopher KI Williams. Automating Data Sci-
ence: Prospects and Challenges, 2022. (Cited on pages 10 and 100.)

[Della Croce et al. 2013] Federico Della Croce, Andrea Grosso and Fabio Salassa.
Matheuristics: Embedding MILP solvers into heuristic algorithms for combi-
natorial optimization problems. Heuristics: Theory and Applications, pages
53–68, 02 2013. (Cited on pages 19 and 33.)

[Ding et al. 2019] Rui Ding, Shi Han, Yong Xu, Haidong Zhang and Dongmei
Zhang. QuickInsights: Quick and Automatic Discovery of Insights from
Multi-Dimensional Data. In Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande and Tim Kraska, editors, Proceedings of the
2019 International Conference on Management of Data, SIGMOD Confer-
ence 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages
317–332, 2019. (Cited on pages 1, 5, 7, 8, 9, 10, 12, 21, 74 and 101.)

[El et al. 2020] Ori Bar El, Tova Milo and Amit Somech. Automatically Generat-
ing Data Exploration Sessions Using Deep Reinforcement Learning. In David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alaw-
ini and Hung Q. Ngo, editors, Proceedings of the 2020 International Confer-
ence on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages 1527–1537, 2020. (Cited on
pages 6, 51, 55, 56 and 68.)

[Engquist 1982] Michael Engquist. A Successive Shortest Path Algorithm for The
Assignment Problem. INFOR: Information Systems and Operational Re-
search, vol. 20, no. 4, pages 370–384, 1982. (Cited on page 29.)

[Feillet et al. 2005] Dominique Feillet, Pierre Dejax and Michel Gendreau. Traveling
Salesman Problems with Profits. Transportation Science, vol. 39, no. 2, pages
188–205, 2005. (Cited on page 14.)

[Feillet 2010] Dominique Feillet. A tutorial on column generation and branch-and-
price for vehicle routing problems. 4OR, vol. 8, pages 407–424, 12 2010.
(Cited on page 71.)

[Fischetti & Fischetti 2018] Martina Fischetti and Matteo Fischetti. Matheuristics,
pages 121–153. Springer International Publishing, Cham, 2018. (Cited on
pages 18 and 19.)

[Fischetti et al. 1998] Matteo Fischetti, Juan José Salazar González and Paolo Toth.
Solving the Orienteering Problem through Branch-and-Cut. INFORMS Jour-
nal on Computing, vol. 10, no. 2, pages 133–148, 1998. (Cited on page 20.)

[Francia et al. 2021] Matteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano
Rizzi and Panos Vassiliadis. Assess Queries for Interactive Analysis of Data

Bibliography 107

Cubes. In Proceedings of EDBT, pages 121–132, Nicosia, Cyprus, 2021.
(Cited on pages 9 and 22.)

[Francia et al. 2022] Matteo Francia, Patrick Marcel, Verónika Peralta and Stefano
Rizzi. Enhancing Cubes with Models to Describe Multidimensional Data. Inf.
Syst. Frontiers, vol. 24, no. 1, pages 31–48, 2022. (Cited on page 8.)

[Garcia-Molina et al. 2002] Garcia-Molina, Hector Hector, Ullman, Jeffrey D,
Widom and Jennifer. Database systems: The complete book. 01 2002.
(Cited on page 22.)

[Garcia-Molina et al. 2009] H. Garcia-Molina, J.D. Ullman and J. Widom.
Database systems: The complete book. Pearson international edition. Pear-
son Prentice Hall, 2009. (Cited on page 75.)

[Garey & Johnson 1990] Michael R. Garey and David S. Johnson. Computers and
intractability; a guide to the theory of np-completeness. W. H. Freeman and
Co., USA, 1990. (Cited on page 15.)

[Geng & Hamilton 2006] Liqiang Geng and Howard J. Hamilton. Interestingness
Measures for Data Mining: A Survey. ACM Comput. Surv., vol. 38, no. 3,
page 9–es, sep 2006. (Cited on pages 6 and 75.)

[Giacometti et al. 2009] Arnaud Giacometti, Patrick Marcel, Elsa Negre and Ar-
naud Soulet. Query recommendations for OLAP discovery driven analysis.
In International Workshop on Data Warehousing and OLAP, 2009. (Cited
on page 10.)

[Gionis et al. 2014] Aristides Gionis, Theodoros Lappas, Konstantinos Pelechrinis
and Evimaria Terzi. Customized tour recommendations in urban areas. In
WSDM, pages 313–322, 2014. (Cited on page 12.)

[Gunawan et al. 2016] Aldy Gunawan, Hoong Chuin Lau and Pieter Vansteenwe-
gen. Orienteering Problem: A survey of recent variants, solution approaches
and applications. European Journal of Operational Research, vol. 255, no. 2,
pages 315–332, December 2016. (Cited on page 19.)

[Gurobi 2016] Gurobi. Algorithms in Gurobi, 2016. (Cited on page 17.)

[Hamming 1950] R. W. Hamming. Error detecting and error correcting codes. The
Bell System Technical Journal, vol. 29, no. 2, pages 147–160, 1950. (Cited
on pages 19 and 33.)

[Helsgaun 2000] Keld Helsgaun. An effective implementation of the Lin–Kernighan
traveling salesman heuristic. European Journal of Operational Research,
vol. 126, no. 1, pages 106–130, 2000. (Cited on page 31.)

108 Bibliography

[Hu & Lim 2014] Qian Hu and Andrew Lim. An iterative three-component heuristic
for the team orienteering problem with time windows. European Journal
of Operational Research, vol. 232, no. 2, pages 276–286, 2014. (Cited on
page 20.)

[IBM 2021] IBM. IBM CPLEX Documentation, November 2021. (Cited on pages 16,
17 and 91.)

[Idreos et al. 2015] Stratos Idreos, Olga Papaemmanouil and Surajit Chaudhuri.
Overview of Data Exploration Techniques. In Proceedings of SIGMOD, pages
277–281, 2015. (Cited on pages 1, 5 and 10.)

[Kahng & Reda 2004] Andrew B. Kahng and Sherief Reda. Match twice and stitch:
a new TSP tour construction heuristic. Operations Research Letters, vol. 32,
no. 6, pages 499–509, 2004. (Cited on page 29.)

[Kara et al. 2016] Imdat Kara, Papatya Sevgin Bicakci and Tusan Derya. New For-
mulations for the Orienteering Problem. Procedia Economics and Finance,
vol. 39, pages 849–854, 2016. (Cited on page 20.)

[Kellerer et al. 2004] Hans Kellerer, Ulrich Pferschy and David Pisinger. Knapsack
problems. 01 2004. (Cited on page 15.)

[Kirby 2003] Maurice Kirby. Operational research in war and peace: The british
experience from the 1930s to 1970. 06 2003. (Cited on page 14.)

[Kobanda et al. 2023] Anthony Kobanda, Valliappan C. A., Joshua Romoff and Lu-
dovic Denoyer. Learning Computational Efficient Bots with Costly Features.
In Proceedings of IEEE CoG, 2023. (Cited on page 100.)

[Lee & Lee 2018] S. Lee and D. K. Lee. What is the proper way to apply the multiple
comparison test? Korean J Anesthesiol, vol. 71, no. 5, pages 353–360, Oct
2018. (Cited on page 10.)

[Ma et al. 2021] Pingchuan Ma, Rui Ding, Shi Han and Dongmei Zhang. MetaIn-
sight: Automatic Discovery of Structured Knowledge for Exploratory Data
Analysis. In Guoliang Li, Zhanhuai Li, Stratos Idreos and Divesh Srivastava,
editors, SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, pages 1262–1274, 2021. (Cited on
pages 6, 7, 8, 10, 12 and 60.)

[Ma et al. 2023a] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han and Dongmei
Zhang. Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System. CoRR, vol. abs/2304.00477, 2023. (Cited on page 12.)

[Ma et al. 2023b] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han and Dongmei
Zhang. XInsight: EXplainable Data Analysis Through The Lens of Causality.
Proc. ACM Manag. Data, vol. 1, no. 2, jun 2023. (Cited on pages 5 and 6.)

Bibliography 109

[Marcel et al. 2019] Patrick Marcel, Verónika Peralta and Panos Vassiliadis. A
Framework for Learning Cell Interestingness from Cube Explorations. In
Proceedings of ADBIS, pages 425–440, 2019. (Cited on pages 6 and 56.)

[Miller et al. 1960] C. E. Miller, A. W. Tucker and R. A. Zemlin. Integer Program-
ming Formulation of Traveling Salesman Problems. Journal of the ACM,
vol. 7, no. 4, page 326–329, 1960. (Cited on page 27.)

[Milo & Somech 2018] Tova Milo and Amit Somech. Next-Step Suggestions for Mod-
ern Interactive Data Analysis Platforms. In SIGKDD, pages 576–585. ACM,
2018. (Cited on page 6.)

[Milo & Somech 2020] Tova Milo and Amit Somech. Automating Exploratory Data
Analysis via Machine Learning: An Overview. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD
’20, page 2617–2622, New York, NY, USA, 2020. Association for Computing
Machinery. (Cited on page 9.)

[Personnaz et al. 2021] Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti-
Équille, Maximilian Fabricius and Srividya Subramanian. DORA THE
EXPLORER: Exploring Very Large Data With Interactive Deep Reinforce-
ment Learning. In Gianluca Demartini, Guido Zuccon, J. Shane Culpepper,
Zi Huang and Hanghang Tong, editors, CIKM ’21: The 30th ACM Inter-
national Conference on Information and Knowledge Management, Virtual
Event, Queensland, Australia, November 1 - 5, 2021, pages 4769–4773, 2021.
(Cited on pages 8 and 11.)

[Personnaz et al. 2022] Aurélien Personnaz, Brit Youngmann and Sihem Amer-
Yahia. EDA4SUM: Guided Exploration of Data Summaries. Proc. VLDB
Endow., vol. 15, no. 12, page 3590–3593, aug 2022. (Cited on pages 8 and 72.)

[Pisinger 1995] David Pisinger. An expanding-core algorithm for the exact 0–1 knap-
sack problem. European Journal of Operational Research, vol. 87, no. 1, pages
175–187, November 1995. (Cited on page 16.)

[Pisinger 2005] David Pisinger. Where are the hard knapsack problems? Computers
& Operations Research, vol. 32, no. 9, pages 2271–2284, 2005. (Cited on
page 36.)

[Razmadze et al. 2022] Kathy Razmadze, Yael Amsterdamer, Amit Somech, Su-
san B. Davidson and Tova Milo. SubTab: Data Exploration with Informative
Sub-Tables. In Proceedings of the 2022 International Conference on Manage-
ment of Data, pages 2369–2372. ACM, 2022. (Cited on pages 8 and 9.)

[Rojas et al. 2017] Julian Ramos Rojas, Mary Beth Kery, Stephanie Rosenthal and
Anind K. Dey. Sampling techniques to improve big data exploration. In
Proceedings of LDAV, pages 26–35, Phoenix, AZ, USA, 2017. (Cited on
page 9.)

110 Bibliography

[Roy et al. 2011] Senjuti Basu Roy, Gautam Das, Sihem Amer-Yahia and Cong
Yu. Interactive itinerary planning. In ICDE, pages 15–26, 2011. (Cited
on pages 12 and 21.)

[Salton & Buckley 1988] Gerard Salton and Christopher Buckley. Term-weighting
approaches in automatic text retrieval. Information Processing & Manage-
ment, vol. 24, no. 5, pages 513–523, 1988. (Cited on page 50.)

[Sarawagi et al. 1998] Sunita Sarawagi, Rakesh Agrawal and Nimrod Megiddo.
Discovery-Driven Exploration of OLAP Data Cubes. In Proceedings of
EDBT, pages 168–182, 1998. (Cited on page 6.)

[Sarawagi 1999] Sunita Sarawagi. Explaining Differences in Multidimensional Ag-
gregates. In Proceedings of VLDB, pages 42–53, 1999. (Cited on page 6.)

[Sarawagi 2000] Sunita Sarawagi. User-Adaptive Exploration of Multidimensional
Data. In Proceedings of VLDB, pages 307–316, 2000. (Cited on page 6.)

[Sathe & Sarawagi 2001] Gayatri Sathe and Sunita Sarawagi. Intelligent Rollups
in Multidimensional OLAP Data. In Proceedings of VLDB, pages 531–540,
2001. (Cited on page 6.)

[Sawtell-Rickson 2023] Jye Sawtell-Rickson. My First Exploratory Data Analysis
with ChatGPT, 2023. (Cited on page 12.)

[Schrijver 1986] Alexander Schrijver. Theory of linear and integer programming.
1986. (Cited on pages 16 and 17.)

[Shi et al. 2020] Danqing Shi, Xinyue Xu, Fuling Sun, Yang Shi and Nan Cao. Cal-
liope: Automatic Visual Data Story Generation from a Spreadsheet. IEEE
Transactions on Visualization and Computer Graphics, vol. 27, pages 453–
463, 2020. (Cited on pages 7, 8 and 11.)

[Siddiqui et al. 2021] Tarique Siddiqui, Surajit Chaudhuri and Vivek R. Narasayya.
COMPARE: Accelerating Groupwise Comparison in Relational Databases for
Data Analytics. Proceedings of VLDB Endow., vol. 14, no. 11, pages 2419–
2431, 2021. (Cited on pages 9 and 21.)

[Singhal & Google 2001] Amit Singhal and I. Google. Modern Information Re-
trieval: A Brief Overview. IEEE Data Engineering Bulletin, vol. 24, 01
2001. (Cited on page 50.)

[Tang et al. 2017] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding and Dongmei Zhang.
Extracting Top-K Insights from Multi-dimensional Data. In Proceedings of
SIGMOD, pages 1509–1524, Chicago, IL, USA, 2017. (Cited on pages 5, 6,
7, 8, 9, 10, 12, 21, 51, 52 and 56.)

Bibliography 111

[T’kindt & Billaut 2006] Vincent T’kindt and Jean-Charles Billaut. Multicriteria
scheduling - theory, models and algorithms (2. ed.). Springer, 2006. (Cited
on page 26.)

[T’Kindt 2023] Vincent T’Kindt. The Marriage of Matheuristics and Scheduling.
In Proceedings of Scheduling seminar, 2023. (Cited on pages 18 and 19.)

[Tsiligirides 1984] Theodore Tsiligirides. Heuristic Methods Applied to Orienteering.
Journal of the Operational Research Society, vol. 35, no. 9, pages 797–809,
1984. (Cited on pages 19 and 20.)

[Tukey 1977] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.
(Cited on pages 1 and 5.)

[Vansteenwegen et al. 2011] Pieter Vansteenwegen, Wouter Souffriau and Dirk Van
Oudheusden. The orienteering problem: A survey. European Journal of
Operational Research, vol. 209, no. 1, pages 1–10, February 2011. (Cited on
page 19.)

[Wang et al. 2020] Y. Wang, Z. Sun, H. Zhang, W. Cui, K. Xu, X. Ma and D. Zhang.
DataShot: Automatic Generation of Fact Sheets from Tabular Data. IEEE
Trans Vis Comput Graph, vol. 26, no. 1, pages 895–905, Jan 2020. (Cited
on pages 6, 7 and 11.)

[Winston 2022] Wayne L Winston. Operations research: applications and algo-
rithms, chapter 4, pages 197–201. Cengage Learning, 2022. (Cited on
page 72.)

[Wren & Holliday 1972] Anthony Wren and Alan Holliday. Computer Scheduling of
Vehicles from One or More Depots to a Number of Delivery Points. Opera-
tional Research Quarterly (1970-1977), vol. 23, no. 3, pages 333–344, 1972.
(Cited on page 20.)

[Xing et al. 2002] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan and Stuart J.
Russell. Distance Metric Learning with Application to Clustering with Side-
Information. In NIPS, pages 505–512, 2002. (Cited on page 50.)

[Young 2016] Neal E. Young. Greedy Set-Cover Algorithms. In Encyclopedia of
Algorithms, pages 886–889. Springer, 2016. (Cited on page 60.)

[Yu et al. 2019] Qinxiao Yu, Kan Fang, Ning Zhu and Shoufeng Ma. A matheuris-
tic approach to the orienteering problem with service time dependent profits.
European Journal of Operational Research, vol. 273, no. 2, pages 488–503,
2019. (Cited on page 21.)

[Zgraggen et al. 2018] Emanuel Zgraggen, Zheguang Zhao, Robert C. Zeleznik and
Tim Kraska. Investigating the Effect of the Multiple Comparisons Problem
in Visual Analysis. In Proceedings of CHI, page 479, Montreal, QC, Canada,
2018. (Cited on pages 1, 5, 6, 7, 9, 10, 21, 51, 52, 55, 56, 58 and 101.)

112 Bibliography

[Zhao et al. 2023] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei
Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican
Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie
and Ji-Rong Wen. A Survey of Large Language Models, 2023. (Cited on
page 12.)

Alexandre Chanson

Optimisation et analyse interactive de données : le Problème du Voyageur de Données

Cette thèse contribue à l’automatisation de l’AED (analyse exploratoire des données). L’AED
est un processus itératif qui consiste à analyser des données en effectuant des actions (telle
qu’une requête sur des données), à recevoir le résultat et à décider de l’étape suivante. L’objectif
final de l’AED est l’extraction de trouvailles, des fragments d’informations utiles étayées par les
données. L’automatisation de l’AED nécessite de surmonter plusieurs obstacles, dont notamment
l’identification et la représentation des informations les plus intéressantes présentent dans une
base de données. Dans cette thèse, nous abordons le problème de la construction d’une séquence
de requêtes représentant des informations pertinentes. Nous introduisons et étudions le problème
d’optimisation associé, nommé le problème du voyageur de données (TAP). Nous établissons
la relation entre le TAP et une famille de problèmes de transport classiques appelés problèmes
d’orientation. En étudiant la littérature, nous avonsidentifié l’action de comparaison de données
comme la principale activité des travailleurs de la donnée. Nous définissons formellement les
trouvailles de comparaison et les requêtes de comparaison associées. Nous proposons différentes
stratégies de résolution selon les tailles des bases de données, dont notamment des matheuristiques.
Celles-ci tirent profit des solveurs mathématiques pour construire des solutions de haute qualité
au TAP, notamment pour les bases de données de petite taille. Pour les bases de données de
grandes taille, nous nous sommes d’abord chargé de la construction des instances du TAP. Une
tache complexe, nécessitant la mise en œuvre de plusieurs stratégies d’optimisation notamment
pour exécuter des millions de tests statistiques rapidement. Ces instances peuvent ensuite être
résolu grâce a deux heurisitques. Finallement, pour eviter ce process de construction des instances,
nous nous inspirons du processus de génération de colonnes. Nous introduisons la génération
de requêtes, une méthode capable de résoudre le TAP sans explorer l’ensemble des requêtes de
comparaison associées à une base de données.

Mots clés : Bases de données, problème de transport sous contraintes, analyse exploratoire
de données, requêtes de comparaisons.

This thesis contributes to the automation of EDA (exploratory data analysis). EDA is the
iterative process of performing an action (such as a query on data), receiving the result, and
deciding on the next step. The final goal of EDA is the extraction of insights, fragments of useful
information justified by the data. Automating EDA requires overcoming several hurdles, notably
identifying and correctly presenting the most interesting insights from a database. In this thesis,
we address the problem of constructing a sequence of queries representing relevant insights. We
introduce and study the associated optimization problem, called the traveling analyst problem
(TAP). We establish the relation between TAP and a family of classic transport problems named
orienteering problems. Surveying the literature, we identify the comparison task as the main
staple of data workers. We formally define the associated comparison insights and comparison
queries. We propose different solution strategies for small and large databases. They include
matheuristics, a recent development in the operation research community. Matheuristics take
advantage of mathematical solvers in their construction. They proved capable of producing
high-quality solutions to the TAP for small-size databases. For large-size databases, we first
tackled the challenging construction of the TAP instances, requiring several optimization strategies
to execute millions of statistical tests in less than an hour. Finally, we take inspiration from the
process of column generation. We introduce query generation, a method that is capable of solving
the TAP without exploring the full set of comparison queries associated with a database.

Keywords: Databases, Orienteering, Exploratory data analysis, comparison queries.

